""" Example code of a simple bidirectional LSTM on the MNIST dataset. Note that using RNNs on image data is not the best idea, but it is a good example to show how to use RNNs that still generalizes to other tasks. Programmed by Aladdin Persson * 2020-05-09 Initial coding * 2022-12-16 Updated with more detailed comments, docstrings to functions, and checked code still functions as intended. """ # Imports import torch import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc. import torch.nn.functional as F # All functions that don't have any parameters from torch.utils.data import ( DataLoader, ) # Gives easier dataset managment and creates mini batches import torchvision.datasets as datasets # Has standard datasets we can import in a nice way import torchvision.transforms as transforms # Transformations we can perform on our dataset from tqdm import tqdm # progress bar # Set device device = "cuda" if torch.cuda.is_available() else "cpu" # Hyperparameters input_size = 28 sequence_length = 28 num_layers = 2 hidden_size = 256 num_classes = 10 learning_rate = 3e-4 batch_size = 64 num_epochs = 2 # Create a bidirectional LSTM class BRNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(BRNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM( input_size, hidden_size, num_layers, batch_first=True, bidirectional=True ) self.fc = nn.Linear(hidden_size * 2, num_classes) def forward(self, x): h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out # Load Data train_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) test_dataset = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) # Initialize network model = BRNN(input_size, hidden_size, num_layers, num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(tqdm(train_loader)): # Get data to cuda if possible data = data.to(device=device).squeeze(1) targets = targets.to(device=device) # forward scores = model(data) loss = criterion(scores, targets) # backward optimizer.zero_grad() loss.backward() # gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): if loader.dataset.train: print("Checking accuracy on training data") else: print("Checking accuracy on test data") num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device).squeeze(1) y = y.to(device=device) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f"Got {num_correct} / {num_samples} with accuracy \ {float(num_correct)/float(num_samples)*100:.2f}" ) model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model)