import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist import tensorflow_datasets as tfds physical_devices = tf.config.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) (ds_train, ds_test), ds_info = tfds.load( "mnist", split=["train", "test"], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): """Normalizes images""" return tf.cast(image, tf.float32) / 255.0, label AUTOTUNE = tf.data.experimental.AUTOTUNE BATCH_SIZE = 128 # Setup for train dataset ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples) ds_train = ds_train.batch(BATCH_SIZE) ds_train = ds_train.prefetch(AUTOTUNE) # Setup for test Dataset ds_test = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_test = ds_train.batch(128) ds_test = ds_train.prefetch(AUTOTUNE) model = keras.Sequential( [ keras.Input((28, 28, 1)), layers.Conv2D(32, 3, activation="relu"), layers.Flatten(), layers.Dense(10, activation="softmax"), ] ) num_epochs = 5 optimizer = keras.optimizers.Adam() loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) acc_metric = keras.metrics.SparseCategoricalAccuracy() # Training Loop for epoch in range(num_epochs): print(f"\nStart of Training Epoch {epoch}") for batch_idx, (x_batch, y_batch) in enumerate(ds_train): with tf.GradientTape() as tape: y_pred = model(x_batch, training=True) loss = loss_fn(y_batch, y_pred) gradients = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) acc_metric.update_state(y_batch, y_pred) train_acc = acc_metric.result() print(f"Accuracy over epoch {train_acc}") acc_metric.reset_states() # Test Loop for batch_idx, (x_batch, y_batch) in enumerate(ds_test): y_pred = model(x_batch, training=True) acc_metric.update_state(y_batch, y_pred) train_acc = acc_metric.result() print(f"Accuracy over Test Set: {train_acc}") acc_metric.reset_states()