import torch import albumentations as A from albumentations.pytorch import ToTensorV2 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" LEARNING_RATE = 3e-5 WEIGHT_DECAY = 5e-4 BATCH_SIZE = 20 NUM_EPOCHS = 100 NUM_WORKERS = 6 CHECKPOINT_FILE = "b3.pth.tar" PIN_MEMORY = True SAVE_MODEL = True LOAD_MODEL = True # Data augmentation for images train_transforms = A.Compose( [ A.Resize(width=760, height=760), A.RandomCrop(height=728, width=728), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.RandomRotate90(p=0.5), A.Blur(p=0.3), A.CLAHE(p=0.3), A.ColorJitter(p=0.3), A.CoarseDropout(max_holes=12, max_height=20, max_width=20, p=0.3), A.IAAAffine(shear=30, rotate=0, p=0.2, mode="constant"), A.Normalize( mean=[0.3199, 0.2240, 0.1609], std=[0.3020, 0.2183, 0.1741], max_pixel_value=255.0, ), ToTensorV2(), ] ) val_transforms = A.Compose( [ A.Resize(height=728, width=728), A.Normalize( mean=[0.3199, 0.2240, 0.1609], std=[0.3020, 0.2183, 0.1741], max_pixel_value=255.0, ), ToTensorV2(), ] )