""" Example code of a simple CNN network training on MNIST dataset. The code is intended to show how to create a CNN network as well as how to initialize loss, optimizer, etc. in a simple way to get training to work with function that checks accuracy as well. Video explanation: https://youtu.be/wnK3uWv_WkU Got any questions leave a comment on youtube :) Programmed by Aladdin Persson * 2020-04-08 Initial coding """ # Imports import torch import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc. import torch.nn.functional as F # All functions that don't have any parameters from torch.utils.data import ( DataLoader, ) # Gives easier dataset managment and creates mini batches import torchvision.datasets as datasets # Has standard datasets we can import in a nice way import torchvision.transforms as transforms # Transformations we can perform on our dataset # Simple CNN class CNN(nn.Module): def __init__(self, in_channels=1, num_classes=10): super(CNN, self).__init__() self.conv1 = nn.Conv2d( in_channels=1, out_channels=8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), ) self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.conv2 = nn.Conv2d( in_channels=8, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), ) self.fc1 = nn.Linear(16 * 7 * 7, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.reshape(x.shape[0], -1) x = self.fc1(x) return x # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters in_channel = 1 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 5 # Load Data train_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) # Initialize network model = CNN().to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # forward scores = model(data) loss = criterion(scores, targets) # backward optimizer.zero_grad() loss.backward() # gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): if loader.dataset.train: print("Checking accuracy on training data") else: print("Checking accuracy on test data") num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}" ) model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model)