""" Example code of how to use the TensorBoard in PyTorch. This code uses a lot of different functions from TensorBoard and tries to have them all in a compact way, it might not be super clear exactly what calls does what, for that I recommend watching the YouTube video. Video explanation: https://youtu.be/RLqsxWaQdHE Got any questions leave a comment on youtube :) Programmed by Aladdin Persson * 2020-04-17 Initial coding """ # Imports import torch import torchvision import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc. import torch.nn.functional as F # All functions that don't have any parameters import torchvision.datasets as datasets # Has standard datasets we can import in a nice way import torchvision.transforms as transforms # Transformations we can perform on our dataset from torch.utils.data import ( DataLoader, ) # Gives easier dataset managment and creates mini batches from torch.utils.tensorboard import SummaryWriter # to print to tensorboard # Simple CNN class CNN(nn.Module): def __init__(self, in_channels=1, num_classes=10): super(CNN, self).__init__() self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=8, kernel_size=3, stride=1, padding=1 ) self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.conv2 = nn.Conv2d( in_channels=8, out_channels=16, kernel_size=3, stride=1, padding=1 ) self.fc1 = nn.Linear(16 * 7 * 7, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.reshape(x.shape[0], -1) x = self.fc1(x) return x # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters in_channels = 1 num_classes = 10 num_epochs = 1 # Load Data train_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) # To do hyperparameter search, include more batch_sizes you want to try # and more learning rates! batch_sizes = [256] learning_rates = [0.001] classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] for batch_size in batch_sizes: for learning_rate in learning_rates: step = 0 # Initialize network model = CNN(in_channels=in_channels, num_classes=num_classes) model.to(device) model.train() criterion = nn.CrossEntropyLoss() train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True ) optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=0.0) writer = SummaryWriter( f"runs/MNIST/MiniBatchSize {batch_size} LR {learning_rate}" ) # Visualize model in TensorBoard images, _ = next(iter(train_loader)) writer.add_graph(model, images.to(device)) writer.close() for epoch in range(num_epochs): losses = [] accuracies = [] for batch_idx, (data, targets) in enumerate(train_loader): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # forward scores = model(data) loss = criterion(scores, targets) losses.append(loss.item()) # backward optimizer.zero_grad() loss.backward() optimizer.step() # Calculate 'running' training accuracy features = data.reshape(data.shape[0], -1) img_grid = torchvision.utils.make_grid(data) _, predictions = scores.max(1) num_correct = (predictions == targets).sum() running_train_acc = float(num_correct) / float(data.shape[0]) accuracies.append(running_train_acc) # Plot things to tensorboard class_labels = [classes[label] for label in predictions] writer.add_image("mnist_images", img_grid) writer.add_histogram("fc1", model.fc1.weight) writer.add_scalar("Training loss", loss, global_step=step) writer.add_scalar( "Training Accuracy", running_train_acc, global_step=step ) if batch_idx == 230: writer.add_embedding( features, metadata=class_labels, label_img=data, global_step=batch_idx, ) step += 1 writer.add_hparams( {"lr": learning_rate, "bsize": batch_size}, { "accuracy": sum(accuracies) / len(accuracies), "loss": sum(losses) / len(losses), }, )