import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist physical_devices = tf.config.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0 x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0 # CNN -> BatchNorm -> ReLU (common structure) # x10 (a lot of code to write!) class CNNBlock(layers.Layer): def __init__(self, out_channels, kernel_size=3): super(CNNBlock, self).__init__() self.conv = layers.Conv2D(out_channels, kernel_size, padding="same") self.bn = layers.BatchNormalization() def call(self, input_tensor, training=False): x = self.conv(input_tensor) x = self.bn(x, training=training) x = tf.nn.relu(x) return x model = keras.Sequential( [CNNBlock(32), CNNBlock(64), CNNBlock(128), layers.Flatten(), layers.Dense(10),] ) class ResBlock(layers.Layer): def __init__(self, channels): super(ResBlock, self).__init__() self.channels = channels self.cnn1 = CNNBlock(channels[0], 3) self.cnn2 = CNNBlock(channels[1], 3) self.cnn3 = CNNBlock(channels[2], 3) self.pooling = layers.MaxPooling2D() self.identity_mapping = layers.Conv2D(channels[1], 3, padding="same") def call(self, input_tensor, training=False): x = self.cnn1(input_tensor, training=training) x = self.cnn2(x, training=training) x = self.cnn3(x + self.identity_mapping(input_tensor), training=training,) x = self.pooling(x) return x class ResNet_Like(keras.Model): def __init__(self, num_classes=10): super(ResNet_Like, self).__init__() self.block1 = ResBlock([32, 32, 64]) self.block2 = ResBlock([128, 128, 256]) self.block3 = ResBlock([128, 256, 512]) self.pool = layers.GlobalAveragePooling2D() self.classifier = layers.Dense(num_classes) def call(self, input_tensor, training=False): x = self.block1(input_tensor, training=training) x = self.block2(x, training=training) x = self.block3(x, training=training) x = self.pool(x, training=training) x = self.classifier(x) return x def model(self): x = keras.Input(shape=(28, 28, 1)) return keras.Model(inputs=[x], outputs=self.call(x)) model = ResNet_Like().model() base_input = model.layers[0].input base_output = model.layers[2].output output = layers.Dense(10)(layers.Flatten()(base_output)) model = keras.Model(base_input, output) model.compile( optimizer=keras.optimizers.Adam(), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) model.fit(x_train, y_train, batch_size=64, epochs=1, verbose=2) model.evaluate(x_test, y_test, batch_size=64, verbose=2) model.save("pretrained")