import torch import torch.nn.functional as F import torchvision.datasets as datasets import torchvision.transforms as transforms from torch import nn, optim from torch.utils.data import DataLoader from tqdm import tqdm from torch.utils.data import random_split class NN(nn.Module): def __init__(self, input_size, num_classes): super().__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x # Set device cuda for GPU if it's available otherwise run on the CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 3 # Load Data entire_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) train_ds, val_ds = random_split(entire_dataset, [50000, 10000]) test_ds = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True) val_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False) # Initialize network model = NN(input_size=input_size, num_classes=num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(tqdm(train_loader)): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # Get to correct shape data = data.reshape(data.shape[0], -1) # Forward scores = model(data) loss = criterion(scores, targets) # Backward optimizer.zero_grad() loss.backward() # Gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): num_correct = 0 num_samples = 0 model.eval() # We don't need to keep track of gradients here so we wrap it in torch.no_grad() with torch.no_grad(): # Loop through the data for x, y in loader: # Move data to device x = x.to(device=device) y = y.to(device=device) # Get to correct shape x = x.reshape(x.shape[0], -1) # Forward pass scores = model(x) _, predictions = scores.max(1) # Check how many we got correct num_correct += (predictions == y).sum() # Keep track of number of samples num_samples += predictions.size(0) model.train() return num_correct / num_samples # Check accuracy on training & test to see how good our model model.to(device) print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}") print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}") print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")