import torch import albumentations as A from albumentations.pytorch import ToTensorV2 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" TRAIN_DIR = "data/train" VAL_DIR = "data/val" LEARNING_RATE = 2e-4 BATCH_SIZE = 16 NUM_WORKERS = 2 IMAGE_SIZE = 256 CHANNELS_IMG = 3 L1_LAMBDA = 100 LAMBDA_GP = 10 NUM_EPOCHS = 500 LOAD_MODEL = False SAVE_MODEL = False CHECKPOINT_DISC = "disc.pth.tar" CHECKPOINT_GEN = "gen.pth.tar" both_transform = A.Compose( [A.Resize(width=256, height=256),], additional_targets={"image0": "image"}, ) transform_only_input = A.Compose( [ A.HorizontalFlip(p=0.5), A.ColorJitter(p=0.2), A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,), ToTensorV2(), ] ) transform_only_mask = A.Compose( [ A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,), ToTensorV2(), ] )