import torch import torch.nn as nn def gradient_penalty(critic, real, fake, device="cpu"): BATCH_SIZE, C, H, W = real.shape alpha = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device) interpolated_images = real * alpha + fake * (1 - alpha) # Calculate critic scores mixed_scores = critic(interpolated_images) # Take the gradient of the scores with respect to the images gradient = torch.autograd.grad( inputs=interpolated_images, outputs=mixed_scores, grad_outputs=torch.ones_like(mixed_scores), create_graph=True, retain_graph=True, )[0] gradient = gradient.view(gradient.shape[0], -1) gradient_norm = gradient.norm(2, dim=1) gradient_penalty = torch.mean((gradient_norm - 1) ** 2) return gradient_penalty def save_checkpoint(state, filename="celeba_wgan_gp.pth.tar"): print("=> Saving checkpoint") torch.save(state, filename) def load_checkpoint(checkpoint, gen, disc): print("=> Loading checkpoint") gen.load_state_dict(checkpoint['gen']) disc.load_state_dict(checkpoint['disc'])