mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
updated readme for docker
This commit is contained in:
61
README.md
61
README.md
@@ -21,35 +21,7 @@ In this repository you will find tutorials and projects related to Machine Learn
|
|||||||
- [TensorFlow Tutorials](#tensorflow-tutorials)
|
- [TensorFlow Tutorials](#tensorflow-tutorials)
|
||||||
- [Beginner Tutorials](#beginner-tutorials)
|
- [Beginner Tutorials](#beginner-tutorials)
|
||||||
- [Architectures](#CNN-Architectures)
|
- [Architectures](#CNN-Architectures)
|
||||||
|
- [Docker setup](#docker-setup)
|
||||||
## Docker Setup
|
|
||||||
Follow the steps below to use Docker for setting up a consistent development environment:
|
|
||||||
|
|
||||||
1. **Install Docker**
|
|
||||||
If you don't have Docker installed, use these links to install Docker for your system:
|
|
||||||
- [Install Docker Engine](https://docs.docker.com/engine/install/)
|
|
||||||
|
|
||||||
2. **Nvidia Container Toolkit (For GPU support)**
|
|
||||||
If you want to utilize GPU acceleration with CUDA, install the Nvidia Container Toolkit:
|
|
||||||
- [Nvidia Container Toolkit Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
|
||||||
|
|
||||||
3. **Build the Docker Image**
|
|
||||||
Navigate to the directory containing the Dockerfile and run:
|
|
||||||
```bash
|
|
||||||
docker build -t aladdin-image .
|
|
||||||
```
|
|
||||||
|
|
||||||
4. **Run the Docker Container**
|
|
||||||
Once the image is built, start the container using the following command:
|
|
||||||
```bash
|
|
||||||
docker run -it \
|
|
||||||
--gpus all \
|
|
||||||
-v "${PWD}:/code" \
|
|
||||||
-p 8080:8080 \
|
|
||||||
--name "aladdin-container" \
|
|
||||||
--env AUTHENTICATE_VIA_JUPYTER="mytoken" \
|
|
||||||
aladdin-image
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Machine Learning
|
## Machine Learning
|
||||||
@@ -175,3 +147,34 @@ If you have any specific video suggestion please make a comment on YouTube :)
|
|||||||
* [GoogLeNet](https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/TensorFlow/CNN_architectures/GoogLeNet)
|
* [GoogLeNet](https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/TensorFlow/CNN_architectures/GoogLeNet)
|
||||||
* [ResNet](https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/TensorFlow/CNN_architectures/ResNet)
|
* [ResNet](https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/TensorFlow/CNN_architectures/ResNet)
|
||||||
|
|
||||||
|
|
||||||
|
## Docker Setup
|
||||||
|
Follow the steps below to use Docker for setting up a consistent development environment:
|
||||||
|
|
||||||
|
1. **Install Docker**
|
||||||
|
If you don't have Docker installed, use these links to install Docker for your system:
|
||||||
|
- [Install Docker Engine](https://docs.docker.com/engine/install/)
|
||||||
|
|
||||||
|
2. **Nvidia Container Toolkit (For GPU support)**
|
||||||
|
If you want to utilize GPU acceleration with CUDA, install the Nvidia Container Toolkit:
|
||||||
|
- [Nvidia Container Toolkit Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
||||||
|
|
||||||
|
3. **Build the Docker Image**
|
||||||
|
Navigate to the directory containing the Dockerfile and run:
|
||||||
|
```bash
|
||||||
|
docker build -t aladdin-image .
|
||||||
|
```
|
||||||
|
|
||||||
|
4. **Run the Docker Container**
|
||||||
|
Once the image is built, start the container using the following command:
|
||||||
|
```bash
|
||||||
|
docker run -it \
|
||||||
|
--gpus all \
|
||||||
|
-v "${PWD}:/code" \
|
||||||
|
-p 8080:8080 \
|
||||||
|
--name "aladdin-container" \
|
||||||
|
--env AUTHENTICATE_VIA_JUPYTER="mytoken" \
|
||||||
|
aladdin-image
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user