add lightning code, finetuning whisper, recommender system neural collaborative filtering

This commit is contained in:
Aladdin Persson
2023-02-21 16:25:42 +01:00
parent c646ef65e2
commit 94f6c024fe
51 changed files with 17977 additions and 25 deletions

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 3
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0]
PRECISION = 16

View File

@@ -0,0 +1,59 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.ToTensor(),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,71 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict(
{
"train_loss": loss,
"train_accuracy": accuracy,
"train_f1_score": f1_score,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
return {"loss": loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,27 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
if __name__ == "__main__":
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=3,
precision=config.PRECISION,
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)