mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
add lightning code, finetuning whisper, recommender system neural collaborative filtering
This commit is contained in:
154
ML/Pytorch/pytorch_lightning/2. LightningModule/simple_fc.py
Normal file
154
ML/Pytorch/pytorch_lightning/2. LightningModule/simple_fc.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.datasets as datasets
|
||||
import torchvision.transforms as transforms
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from torch.utils.data import random_split
|
||||
import pytorch_lightning as pl
|
||||
|
||||
class NN(nn.Module):
|
||||
def __init__(self, input_size, num_classes):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_size, 50)
|
||||
self.fc2 = nn.Linear(50, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
class NN(pl.LightningModule):
|
||||
def __init__(self, input_size, num_classes):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_size, 50)
|
||||
self.fc2 = nn.Linear(50, num_classes)
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
loss, scores, y = self._common_step(batch, batch_idx)
|
||||
self.log('train_loss', loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss, scores, y = self._common_step(batch, batch_idx)
|
||||
self.log('val_loss', loss)
|
||||
return loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
loss, scores, y = self._common_step(batch, batch_idx)
|
||||
self.log('test_loss', loss)
|
||||
return loss
|
||||
|
||||
def _common_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
x = x.reshape(x.size(0), -1)
|
||||
scores = self.forward(x)
|
||||
loss = self.loss_fn(scores, y)
|
||||
return loss, scores, y
|
||||
|
||||
def predict_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
x = x.reshape(x.size(0), -1)
|
||||
scores = self.forward(x)
|
||||
preds = torch.argmax(scores, dim=1)
|
||||
return preds
|
||||
|
||||
def configure_optimizers(self):
|
||||
return optim.Adam(self.parameters(), lr=0.001)
|
||||
|
||||
# Set device cuda for GPU if it's available otherwise run on the CPU
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
|
||||
input_size = 784
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 64
|
||||
num_epochs = 3
|
||||
|
||||
# Load Data
|
||||
entire_dataset = datasets.MNIST(
|
||||
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
|
||||
)
|
||||
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
|
||||
test_ds = datasets.MNIST(
|
||||
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
|
||||
)
|
||||
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
|
||||
val_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
|
||||
|
||||
# Initialize network
|
||||
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# Get to correct shape
|
||||
data = data.reshape(data.shape[0], -1)
|
||||
|
||||
# Forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
# Backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# Gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
def check_accuracy(loader, model):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
|
||||
with torch.no_grad():
|
||||
# Loop through the data
|
||||
for x, y in loader:
|
||||
|
||||
# Move data to device
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
# Get to correct shape
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
|
||||
# Forward pass
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
|
||||
# Check how many we got correct
|
||||
num_correct += (predictions == y).sum()
|
||||
|
||||
# Keep track of number of samples
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
model.train()
|
||||
return num_correct / num_samples
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
model.to(device)
|
||||
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
Reference in New Issue
Block a user