DR kaggle

This commit is contained in:
Aladdin Persson
2021-05-30 16:24:52 +02:00
parent 9675f0d6af
commit 8136ee169f
6 changed files with 565 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LEARNING_RATE = 3e-5
WEIGHT_DECAY = 5e-4
BATCH_SIZE = 20
NUM_EPOCHS = 100
NUM_WORKERS = 6
CHECKPOINT_FILE = "b3.pth.tar"
PIN_MEMORY = True
SAVE_MODEL = True
LOAD_MODEL = True
# Data augmentation for images
train_transforms = A.Compose(
[
A.Resize(width=760, height=760),
A.RandomCrop(height=728, width=728),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Blur(p=0.3),
A.CLAHE(p=0.3),
A.ColorJitter(p=0.3),
A.CoarseDropout(max_holes=12, max_height=20, max_width=20, p=0.3),
A.IAAAffine(shear=30, rotate=0, p=0.2, mode="constant"),
A.Normalize(
mean=[0.3199, 0.2240, 0.1609],
std=[0.3020, 0.2183, 0.1741],
max_pixel_value=255.0,
),
ToTensorV2(),
]
)
val_transforms = A.Compose(
[
A.Resize(height=728, width=728),
A.Normalize(
mean=[0.3199, 0.2240, 0.1609],
std=[0.3020, 0.2183, 0.1741],
max_pixel_value=255.0,
),
ToTensorV2(),
]
)

View File

@@ -0,0 +1,56 @@
import config
import os
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from tqdm import tqdm
class DRDataset(Dataset):
def __init__(self, images_folder, path_to_csv, train=True, transform=None):
super().__init__()
self.data = pd.read_csv(path_to_csv)
self.images_folder = images_folder
self.image_files = os.listdir(images_folder)
self.transform = transform
self.train = train
def __len__(self):
return self.data.shape[0] if self.train else len(self.image_files)
def __getitem__(self, index):
if self.train:
image_file, label = self.data.iloc[index]
else:
# if test simply return -1 for label, I do this in order to
# re-use same dataset class for test set submission later on
image_file, label = self.image_files[index], -1
image_file = image_file.replace(".jpeg", "")
image = np.array(Image.open(os.path.join(self.images_folder, image_file+".jpeg")))
if self.transform:
image = self.transform(image=image)["image"]
return image, label, image_file
if __name__ == "__main__":
"""
Test if everything works ok
"""
dataset = DRDataset(
images_folder="../train/images_resized_650/",
path_to_csv="../train/trainLabels.csv",
transform=config.val_transforms,
)
loader = DataLoader(
dataset=dataset, batch_size=32, num_workers=2, shuffle=True, pin_memory=True
)
for x, label, file in tqdm(loader):
print(x.shape)
print(label.shape)
import sys
sys.exit()

View File

@@ -0,0 +1,82 @@
"""
Tries to remove unnecessary black borders around the images, and
"trim" the images to they take up the entirety of the image.
It's hacky & not very nice but it works :))
"""
import os
import numpy as np
from PIL import Image
import warnings
from multiprocessing import Pool
from tqdm import tqdm
import cv2
def trim(im):
"""
Converts image to grayscale using cv2, then computes binary matrix
of the pixels that are above a certain threshold, then takes out
the first row where a certain percetage of the pixels are above the
threshold will be the first clip point. Same idea for col, max row, max col.
"""
percentage = 0.02
img = np.array(im)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
im = img_gray > 0.1 * np.mean(img_gray[img_gray != 0])
row_sums = np.sum(im, axis=1)
col_sums = np.sum(im, axis=0)
rows = np.where(row_sums > img.shape[1] * percentage)[0]
cols = np.where(col_sums > img.shape[0] * percentage)[0]
min_row, min_col = np.min(rows), np.min(cols)
max_row, max_col = np.max(rows), np.max(cols)
im_crop = img[min_row : max_row + 1, min_col : max_col + 1]
return Image.fromarray(im_crop)
def resize_maintain_aspect(image, desired_size):
"""
Stole this from some stackoverflow post but can't remember which,
this will add padding to maintain the aspect ratio.
"""
old_size = image.size # old_size[0] is in (width, height) format
ratio = float(desired_size) / max(old_size)
new_size = tuple([int(x * ratio) for x in old_size])
im = image.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (desired_size, desired_size))
new_im.paste(im, ((desired_size - new_size[0]) // 2, (desired_size - new_size[1]) // 2))
return new_im
def save_single(args):
img_file, input_path_folder, output_path_folder, output_size = args
image_original = Image.open(os.path.join(input_path_folder, img_file))
image = trim(image_original)
image = resize_maintain_aspect(image, desired_size=output_size[0])
image.save(os.path.join(output_path_folder + img_file))
def fast_image_resize(input_path_folder, output_path_folder, output_size=None):
"""
Uses multiprocessing to make it fast
"""
if not output_size:
warnings.warn("Need to specify output_size! For example: output_size=100")
exit()
if not os.path.exists(output_path_folder):
os.makedirs(output_path_folder)
jobs = [
(file, input_path_folder, output_path_folder, output_size)
for file in os.listdir(input_path_folder)
]
with Pool() as p:
list(tqdm(p.imap_unordered(save_single, jobs), total=len(jobs)))
if __name__ == "__main__":
fast_image_resize("../train/images/", "../train/images_resized_150/", output_size=(150, 150))
fast_image_resize("../test/images/", "../test/images_resized_150/", output_size=(150, 150))

View File

@@ -0,0 +1,125 @@
import torch
from torch import nn, optim
import os
import config
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import cohen_kappa_score
from efficientnet_pytorch import EfficientNet
from dataset import DRDataset
from torchvision.utils import save_image
from utils import (
load_checkpoint,
save_checkpoint,
check_accuracy,
make_prediction,
get_csv_for_blend,
)
def train_one_epoch(loader, model, optimizer, loss_fn, scaler, device):
losses = []
loop = tqdm(loader)
for batch_idx, (data, targets, _) in enumerate(loop):
# save examples and make sure they look ok with the data augmentation,
# tip is to first set mean=[0,0,0], std=[1,1,1] so they look "normal"
#save_image(data, f"hi_{batch_idx}.png")
data = data.to(device=device)
targets = targets.to(device=device)
# forward
with torch.cuda.amp.autocast():
scores = model(data)
loss = loss_fn(scores, targets.unsqueeze(1).float())
losses.append(loss.item())
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
loop.set_postfix(loss=loss.item())
print(f"Loss average over epoch: {sum(losses)/len(losses)}")
def main():
train_ds = DRDataset(
images_folder="train/images_preprocessed_1000/",
path_to_csv="train/trainLabels.csv",
transform=config.val_transforms,
)
val_ds = DRDataset(
images_folder="train/images_preprocessed_1000/",
path_to_csv="train/valLabels.csv",
transform=config.val_transforms,
)
test_ds = DRDataset(
images_folder="test/images_preprocessed_1000",
path_to_csv="train/trainLabels.csv",
transform=config.val_transforms,
train=False,
)
test_loader = DataLoader(
test_ds, batch_size=config.BATCH_SIZE, num_workers=6, shuffle=False
)
train_loader = DataLoader(
train_ds,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
pin_memory=config.PIN_MEMORY,
shuffle=False,
)
val_loader = DataLoader(
val_ds,
batch_size=config.BATCH_SIZE,
num_workers=2,
pin_memory=config.PIN_MEMORY,
shuffle=False,
)
loss_fn = nn.MSELoss()
model = EfficientNet.from_pretrained("efficientnet-b3")
model._fc = nn.Linear(1536, 1)
model = model.to(config.DEVICE)
optimizer = optim.Adam(model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY)
scaler = torch.cuda.amp.GradScaler()
if config.LOAD_MODEL and config.CHECKPOINT_FILE in os.listdir():
load_checkpoint(torch.load(config.CHECKPOINT_FILE), model, optimizer, config.LEARNING_RATE)
# Run after training is done and you've achieved good result
# on validation set, then run train_blend.py file to use information
# about both eyes concatenated
get_csv_for_blend(val_loader, model, "../train/val_blend.csv")
get_csv_for_blend(train_loader, model, "../train/train_blend.csv")
get_csv_for_blend(test_loader, model, "../train/test_blend.csv")
make_prediction(model, test_loader, "submission_.csv")
import sys
sys.exit()
#make_prediction(model, test_loader)
for epoch in range(config.NUM_EPOCHS):
train_one_epoch(train_loader, model, optimizer, loss_fn, scaler, config.DEVICE)
# get on validation
preds, labels = check_accuracy(val_loader, model, config.DEVICE)
print(f"QuadraticWeightedKappa (Validation): {cohen_kappa_score(labels, preds, weights='quadratic')}")
# get on train
#preds, labels = check_accuracy(train_loader, model, config.DEVICE)
#print(f"QuadraticWeightedKappa (Training): {cohen_kappa_score(labels, preds, weights='quadratic')}")
if config.SAVE_MODEL:
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
save_checkpoint(checkpoint, filename=f"b3_{epoch}.pth.tar")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,126 @@
import torch
from tqdm import tqdm
import numpy as np
from torch import nn
from torch import optim
from torch.utils.data import DataLoader, Dataset
from utils import save_checkpoint, load_checkpoint, check_accuracy
from sklearn.metrics import cohen_kappa_score
import config
import os
import pandas as pd
def make_prediction(model, loader, file):
preds = []
filenames = []
model.eval()
for x, y, files in tqdm(loader):
x = x.to(config.DEVICE)
with torch.no_grad():
predictions = model(x)
# Convert MSE floats to integer predictions
predictions[predictions < 0.5] = 0
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
predictions[(predictions >= 3.5) & (predictions < 1000000000000)] = 4
predictions = predictions.long().view(-1)
y = y.view(-1)
preds.append(predictions.cpu().numpy())
filenames += map(list, zip(files[0], files[1]))
filenames = [item for sublist in filenames for item in sublist]
df = pd.DataFrame({"image": filenames, "level": np.concatenate(preds, axis=0)})
df.to_csv(file, index=False)
model.train()
print("Done with predictions")
class MyDataset(Dataset):
def __init__(self, csv_file):
self.csv = pd.read_csv(csv_file)
def __len__(self):
return self.csv.shape[0]
def __getitem__(self, index):
example = self.csv.iloc[index, :]
features = example.iloc[: example.shape[0] - 4].to_numpy().astype(np.float32)
labels = example.iloc[-4:-2].to_numpy().astype(np.int64)
filenames = example.iloc[-2:].values.tolist()
return features, labels, filenames
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.BatchNorm1d((1536 + 1) * 2),
nn.Linear((1536+1) * 2, 500),
nn.BatchNorm1d(500),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(500, 100),
nn.BatchNorm1d(100),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(100, 2),
)
def forward(self, x):
return self.model(x)
if __name__ == "__main__":
model = MyModel().to(config.DEVICE)
ds = MyDataset(csv_file="train/train_blend.csv")
loader = DataLoader(ds, batch_size=256, num_workers=3, pin_memory=True, shuffle=True)
ds_val = MyDataset(csv_file="train/val_blend.csv")
loader_val = DataLoader(
ds_val, batch_size=256, num_workers=3, pin_memory=True, shuffle=True
)
ds_test = MyDataset(csv_file="train/test_blend.csv")
loader_test = DataLoader(
ds_test, batch_size=256, num_workers=2, pin_memory=True, shuffle=False
)
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
loss_fn = nn.MSELoss()
if config.LOAD_MODEL and "linear.pth.tar" in os.listdir():
load_checkpoint(torch.load("linear.pth.tar"), model, optimizer, lr=1e-4)
model.train()
for _ in range(5):
losses = []
for x, y, files in tqdm(loader_val):
x = x.to(config.DEVICE).float()
y = y.to(config.DEVICE).view(-1).float()
# forward
scores = model(x).view(-1)
loss = loss_fn(scores, y)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Loss: {sum(losses)/len(losses)}")
if config.SAVE_MODEL:
checkpoint = {"state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
save_checkpoint(checkpoint, filename="linear.pth.tar")
preds, labels = check_accuracy(loader_val, model)
print(cohen_kappa_score(labels, preds, weights="quadratic"))
preds, labels = check_accuracy(loader, model)
print(cohen_kappa_score(labels, preds, weights="quadratic"))
make_prediction(model, loader_test, "test_preds.csv")

View File

@@ -0,0 +1,128 @@
import torch
import pandas as pd
import numpy as np
import config
from tqdm import tqdm
import warnings
import torch.nn.functional as F
def make_prediction(model, loader, output_csv="submission.csv"):
preds = []
filenames = []
model.eval()
for x, y, files in tqdm(loader):
x = x.to(config.DEVICE)
with torch.no_grad():
predictions = model(x)
# Convert MSE floats to integer predictions
predictions[predictions < 0.5] = 0
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
predictions[(predictions >= 3.5) & (predictions < 10000000)] = 4
predictions = predictions.long().squeeze(1)
preds.append(predictions.cpu().numpy())
filenames += files
df = pd.DataFrame({"image": filenames, "level": np.concatenate(preds, axis=0)})
df.to_csv(output_csv, index=False)
model.train()
print("Done with predictions")
def check_accuracy(loader, model, device="cuda"):
model.eval()
all_preds, all_labels = [], []
num_correct = 0
num_samples = 0
for x, y, filename in tqdm(loader):
x = x.to(device=device)
y = y.to(device=device)
with torch.no_grad():
predictions = model(x)
# Convert MSE floats to integer predictions
predictions[predictions < 0.5] = 0
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
predictions[(predictions >= 3.5) & (predictions < 100)] = 4
predictions = predictions.long().view(-1)
y = y.view(-1)
num_correct += (predictions == y).sum()
num_samples += predictions.shape[0]
# add to lists
all_preds.append(predictions.detach().cpu().numpy())
all_labels.append(y.detach().cpu().numpy())
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
)
model.train()
return np.concatenate(all_preds, axis=0, dtype=np.int64), np.concatenate(
all_labels, axis=0, dtype=np.int64
)
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model, optimizer, lr):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
#optimizer.load_state_dict(checkpoint["optimizer"])
# If we don't do this then it will just have learning rate of old checkpoint
# and it will lead to many hours of debugging \:
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def get_csv_for_blend(loader, model, output_csv_file):
warnings.warn("Important to have shuffle=False (and to ensure batch size is even size) when running get_csv_for_blend also set val_transforms to train_loader!")
model.eval()
filename_first = []
filename_second = []
labels_first = []
labels_second = []
all_features = []
for idx, (images, y, image_files) in enumerate(tqdm(loader)):
images = images.to(config.DEVICE)
with torch.no_grad():
features = F.adaptive_avg_pool2d(
model.extract_features(images), output_size=1
)
features_logits = features.reshape(features.shape[0] // 2, 2, features.shape[1])
preds = model(images).reshape(images.shape[0] // 2, 2, 1)
new_features = (
torch.cat([features_logits, preds], dim=2)
.view(preds.shape[0], -1)
.cpu()
.numpy()
)
all_features.append(new_features)
filename_first += image_files[::2]
filename_second += image_files[1::2]
labels_first.append(y[::2].cpu().numpy())
labels_second.append(y[1::2].cpu().numpy())
all_features = np.concatenate(all_features, axis=0)
df = pd.DataFrame(
data=all_features, columns=[f"f_{idx}" for idx in range(all_features.shape[1])]
)
df["label_first"] = np.concatenate(labels_first, axis=0)
df["label_second"] = np.concatenate(labels_second, axis=0)
df["file_first"] = filename_first
df["file_second"] = filename_second
df.to_csv(output_csv_file, index=False)
model.train()