Initial commit

This commit is contained in:
Aladdin Persson
2021-01-30 21:49:15 +01:00
commit 65b8c80495
432 changed files with 1290844 additions and 0 deletions

Binary file not shown.

Binary file not shown.

96
ML/algorithms/svm/svm.py Normal file
View File

@@ -0,0 +1,96 @@
"""
Implementation of SVM using cvxopt package. Implementation uses
soft margin and I've defined linear, polynomial and gaussian kernels.
To understand the theory (which is a bit challenging) I recommend reading the following:
http://cs229.stanford.edu/notes/cs229-notes3.pdf
https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU (Lectures 6,7 by Andrew Ng)
To understand how to reformulate the optimization problem we obtain
to get the input to cvxopt QP solver this blogpost can be useful:
https://xavierbourretsicotte.github.io/SVM_implementation.html
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-26 Initial coding
"""
import numpy as np
import cvxopt
from utils import create_dataset, plot_contour
def linear(x, z):
return np.dot(x, z.T)
def polynomial(x, z, p=5):
return (1 + np.dot(x, z.T)) ** p
def gaussian(x, z, sigma=0.1):
return np.exp(-np.linalg.norm(x - z, axis=1) ** 2 / (2 * (sigma ** 2)))
class SVM:
def __init__(self, kernel=gaussian, C=1):
self.kernel = kernel
self.C = C
def fit(self, X, y):
self.y = y
self.X = X
m, n = X.shape
# Calculate Kernel
self.K = np.zeros((m, m))
for i in range(m):
self.K[i, :] = self.kernel(X[i, np.newaxis], self.X)
# Solve with cvxopt final QP needs to be reformulated
# to match the input form for cvxopt.solvers.qp
P = cvxopt.matrix(np.outer(y, y) * self.K)
q = cvxopt.matrix(-np.ones((m, 1)))
G = cvxopt.matrix(np.vstack((np.eye(m) * -1, np.eye(m))))
h = cvxopt.matrix(np.hstack((np.zeros(m), np.ones(m) * self.C)))
A = cvxopt.matrix(y, (1, m), "d")
b = cvxopt.matrix(np.zeros(1))
cvxopt.solvers.options["show_progress"] = False
sol = cvxopt.solvers.qp(P, q, G, h, A, b)
self.alphas = np.array(sol["x"])
def predict(self, X):
y_predict = np.zeros((X.shape[0]))
sv = self.get_parameters(self.alphas)
for i in range(X.shape[0]):
y_predict[i] = np.sum(
self.alphas[sv]
* self.y[sv, np.newaxis]
* self.kernel(X[i], self.X[sv])[:, np.newaxis]
)
return np.sign(y_predict + self.b)
def get_parameters(self, alphas):
threshold = 1e-5
sv = ((alphas > threshold) * (alphas < self.C)).flatten()
self.w = np.dot(X[sv].T, alphas[sv] * self.y[sv, np.newaxis])
self.b = np.mean(
self.y[sv, np.newaxis]
- self.alphas[sv] * self.y[sv, np.newaxis] * self.K[sv, sv][:, np.newaxis]
)
return sv
if __name__ == "__main__":
np.random.seed(1)
X, y = create_dataset(N=50)
svm = SVM(kernel=gaussian)
svm.fit(X, y)
y_pred = svm.predict(X)
plot_contour(X, y, svm)
print(f"Accuracy: {sum(y==y_pred)/y.shape[0]}")

View File

@@ -0,0 +1,47 @@
"""
These were (shamelessly) taken from cs231n course github code.
I believe these were coded by Andrej Karpathy so credit goes to him
for coding these.
"""
import numpy as np
import matplotlib.pyplot as plt
def create_dataset(N, D=2, K=2):
X = np.zeros((N * K, D)) # data matrix (each row = single example)
y = np.zeros(N * K) # class labels
for j in range(K):
ix = range(N * j, N * (j + 1))
r = np.linspace(0.0, 1, N) # radius
t = np.linspace(j * 4, (j + 1) * 4, N) + np.random.randn(N) * 0.2 # theta
X[ix] = np.c_[r * np.sin(t), r * np.cos(t)]
y[ix] = j
# lets visualize the data:
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()
y[y == 0] -= 1
return X, y
def plot_contour(X, y, svm):
# plot the resulting classifier
h = 0.01
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
points = np.c_[xx.ravel(), yy.ravel()]
Z = svm.predict(points)
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
# plt the points
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()