mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
Initial commit
This commit is contained in:
90
ML/algorithms/naivebayes/example_data/data.txt
Normal file
90
ML/algorithms/naivebayes/example_data/data.txt
Normal file
@@ -0,0 +1,90 @@
|
||||
1.1107, -2.1079
|
||||
-0.5498, 0.0943
|
||||
-0.0382, 1.8829
|
||||
0.0555, -0.6139
|
||||
0.5870, -1.2067
|
||||
0.5453, 0.2509
|
||||
-0.3927, -0.6220
|
||||
-1.1905, -1.8785
|
||||
-0.4240, 0.7772
|
||||
-0.7139, 1.5846
|
||||
-0.8883, 2.1408
|
||||
-0.6922, 0.0993
|
||||
1.4350, 1.2334
|
||||
-0.7576, 0.7386
|
||||
-1.1144, -1.7059
|
||||
0.6612, -1.7296
|
||||
-2.1381, -0.0600
|
||||
1.3857, 1.2178
|
||||
-1.4951, 0.0373
|
||||
0.8029, 0.9739
|
||||
1.5607, 1.5862
|
||||
0.8563, -1.4245
|
||||
0.0397, -1.3799
|
||||
1.2331, 1.7421
|
||||
-2.0015, 0.8355
|
||||
-0.3428, -0.4780
|
||||
-0.8891, 1.2634
|
||||
0.3832, -0.1189
|
||||
0.4172, 1.0132
|
||||
-0.8695, -0.7947
|
||||
2.9737, 3.6438
|
||||
3.7680, 1.8649
|
||||
0.1166, 0.9435
|
||||
0.6896, 3.9160
|
||||
1.2234, 2.9899
|
||||
2.3009, 0.4150
|
||||
3.7693, 3.8027
|
||||
1.9450, 3.4208
|
||||
0.9290, 3.3611
|
||||
5.0027, 2.7870
|
||||
1.0101, 1.8737
|
||||
2.0751, 2.2628
|
||||
1.9113, 3.6777
|
||||
2.3127, 3.9130
|
||||
1.9392, 2.3976
|
||||
3.1218, 2.5495
|
||||
1.7032, 1.1509
|
||||
0.4212, 3.5322
|
||||
2.7686, 0.9402
|
||||
2.1696, 2.9285
|
||||
0.3380, 2.0947
|
||||
3.6886, 0.4054
|
||||
2.6315, 3.1962
|
||||
-0.5332, 3.1421
|
||||
0.3380, 3.0801
|
||||
1.4030, 1.1841
|
||||
2.8739, 2.7777
|
||||
1.1254, 3.2404
|
||||
0.0988, 1.9522
|
||||
0.3688, 2.8904
|
||||
1.4758, -1.6387
|
||||
1.9289, -1.8191
|
||||
2.5741, -1.3213
|
||||
2.1917, -1.2852
|
||||
0.8358, -2.3349
|
||||
2.6863, -1.8834
|
||||
3.1102, -0.4854
|
||||
3.7073, -0.6466
|
||||
3.6394, -0.4097
|
||||
0.5365, -3.6555
|
||||
2.9295, -0.3819
|
||||
0.8168, -3.1133
|
||||
1.3432, -1.7717
|
||||
1.1039, -2.2261
|
||||
1.3754, -2.2236
|
||||
0.6757, -2.5379
|
||||
-0.2029, -3.8420
|
||||
2.4210, -1.9788
|
||||
1.0335, -2.6042
|
||||
0.9638, -2.9449
|
||||
-0.8198, -5.4449
|
||||
1.9552, -1.5530
|
||||
0.3505, -3.1887
|
||||
2.4943, -1.8116
|
||||
1.9761, -1.0664
|
||||
0.5994, -3.0513
|
||||
2.2076, -1.6728
|
||||
1.9941, -1.8826
|
||||
1.7487, -2.9644
|
||||
1.4160, -2.4234
|
||||
90
ML/algorithms/naivebayes/example_data/targets.txt
Normal file
90
ML/algorithms/naivebayes/example_data/targets.txt
Normal file
@@ -0,0 +1,90 @@
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
67
ML/algorithms/naivebayes/naivebayes.py
Normal file
67
ML/algorithms/naivebayes/naivebayes.py
Normal file
@@ -0,0 +1,67 @@
|
||||
"""
|
||||
Naive Bayes Classifier Implementation from scratch
|
||||
|
||||
To run the code structure the code in the following way:
|
||||
X be size: (num_training_examples, num_features)
|
||||
y be size: (num_classes, )
|
||||
|
||||
Where the classes are 0, 1, 2, etc. Then an example run looks like:
|
||||
NB = NaiveBayes(X, y)
|
||||
NB.fit(X)
|
||||
predictions = NB.predict(X)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-21 Initial coding
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NaiveBayes:
|
||||
def __init__(self, X, y):
|
||||
self.num_examples, self.num_features = X.shape
|
||||
self.num_classes = len(np.unique(y))
|
||||
self.eps = 1e-6
|
||||
|
||||
def fit(self, X):
|
||||
self.classes_mean = {}
|
||||
self.classes_variance = {}
|
||||
self.classes_prior = {}
|
||||
|
||||
for c in range(self.num_classes):
|
||||
X_c = X[y == c]
|
||||
|
||||
self.classes_mean[str(c)] = np.mean(X_c, axis=0)
|
||||
self.classes_variance[str(c)] = np.var(X_c, axis=0)
|
||||
self.classes_prior[str(c)] = X_c.shape[0] / X.shape[0]
|
||||
|
||||
def predict(self, X):
|
||||
probs = np.zeros((self.num_examples, self.num_classes))
|
||||
|
||||
for c in range(self.num_classes):
|
||||
prior = self.classes_prior[str(c)]
|
||||
probs_c = self.density_function(
|
||||
X, self.classes_mean[str(c)], self.classes_variance[str(c)]
|
||||
)
|
||||
probs[:, c] = probs_c + np.log(prior)
|
||||
|
||||
return np.argmax(probs, 1)
|
||||
|
||||
def density_function(self, x, mean, sigma):
|
||||
# Calculate probability from Gaussian density function
|
||||
const = -self.num_features / 2 * np.log(2 * np.pi) - 0.5 * np.sum(
|
||||
np.log(sigma + self.eps)
|
||||
)
|
||||
probs = 0.5 * np.sum(np.power(x - mean, 2) / (sigma + self.eps), 1)
|
||||
return const - probs
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
X = np.loadtxt("example_data/data.txt", delimiter=",")
|
||||
y = np.loadtxt("example_data/targets.txt") - 1
|
||||
|
||||
NB = NaiveBayes(X, y)
|
||||
NB.fit(X)
|
||||
y_pred = NB.predict(X)
|
||||
|
||||
print(f"Accuracy: {sum(y_pred==y)/X.shape[0]}")
|
||||
Reference in New Issue
Block a user