mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
Initial commit
This commit is contained in:
47
ML/TensorFlow/Basics/tutorial3-neuralnetwork.py
Normal file
47
ML/TensorFlow/Basics/tutorial3-neuralnetwork.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.datasets import mnist
|
||||
|
||||
physical_devices = tf.config.list_physical_devices("GPU")
|
||||
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_train = x_train.reshape(-1, 28 * 28).astype("float32") / 255.0
|
||||
x_test = x_test.reshape(-1, 28 * 28).astype("float32") / 255.0
|
||||
|
||||
# Sequential API (Very convenient, not very flexible)
|
||||
model = keras.Sequential(
|
||||
[
|
||||
keras.Input(shape=(28 * 28)),
|
||||
layers.Dense(512, activation="relu"),
|
||||
layers.Dense(256, activation="relu"),
|
||||
layers.Dense(10),
|
||||
]
|
||||
)
|
||||
|
||||
model = keras.Sequential()
|
||||
model.add(keras.Input(shape=(784)))
|
||||
model.add(layers.Dense(512, activation="relu"))
|
||||
model.add(layers.Dense(256, activation="relu", name="my_layer"))
|
||||
model.add(layers.Dense(10))
|
||||
|
||||
# Functional API (A bit more flexible)
|
||||
inputs = keras.Input(shape=(784))
|
||||
x = layers.Dense(512, activation="relu", name="first_layer")(inputs)
|
||||
x = layers.Dense(256, activation="relu", name="second_layer")(x)
|
||||
outputs = layers.Dense(10, activation="softmax")(x)
|
||||
model = keras.Model(inputs=inputs, outputs=outputs)
|
||||
|
||||
model.compile(
|
||||
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
||||
optimizer=keras.optimizers.Adam(lr=0.001),
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
|
||||
model.fit(x_train, y_train, batch_size=32, epochs=5, verbose=2)
|
||||
model.evaluate(x_test, y_test, batch_size=32, verbose=2)
|
||||
Reference in New Issue
Block a user