Initial commit

This commit is contained in:
Aladdin Persson
2021-01-30 21:49:15 +01:00
commit 65b8c80495
432 changed files with 1290844 additions and 0 deletions

View File

@@ -0,0 +1,46 @@
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
import pandas as pd
from tensorflow import keras
from tensorflow.keras import layers
import pathlib # pathlib is in standard library
batch_size = 2
img_height = 28
img_width = 28
directory = "data/mnist_images_only/"
ds_train = tf.data.Dataset.list_files(str(pathlib.Path(directory + "*.jpg")))
def process_path(file_path):
image = tf.io.read_file(file_path)
image = tf.image.decode_jpeg(image, channels=1)
label = tf.strings.split(file_path, "\\")
label = tf.strings.substr(label, pos=0, len=1)[2]
label = tf.strings.to_number(label, out_type=tf.int64)
return image, label
ds_train = ds_train.map(process_path).batch(batch_size)
model = keras.Sequential(
[
layers.Input((28, 28, 1)),
layers.Conv2D(16, 3, padding="same"),
layers.Conv2D(32, 3, padding="same"),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(10),
]
)
model.compile(
optimizer=keras.optimizers.Adam(),
loss=[keras.losses.SparseCategoricalCrossentropy(from_logits=True),],
metrics=["accuracy"],
)
model.fit(ds_train, epochs=10, verbose=2)