mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-22 03:37:57 +00:00
Initial commit
This commit is contained in:
73
ML/TensorFlow/Basics/tutorial14-callbacks.py
Normal file
73
ML/TensorFlow/Basics/tutorial14-callbacks.py
Normal file
@@ -0,0 +1,73 @@
|
||||
import os
|
||||
import matplotlib.pyplot
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
physical_devices = tf.config.list_physical_devices("GPU")
|
||||
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||
|
||||
(ds_train, ds_test), ds_info = tfds.load(
|
||||
"mnist",
|
||||
split=["train", "test"],
|
||||
shuffle_files=True,
|
||||
as_supervised=True, # will return tuple (img, label) otherwise dict
|
||||
with_info=True, # able to get info about dataset
|
||||
)
|
||||
|
||||
|
||||
def normalize_img(image, label):
|
||||
"""Normalizes images"""
|
||||
return tf.cast(image, tf.float32) / 255.0, label
|
||||
|
||||
|
||||
AUTOTUNE = tf.data.experimental.AUTOTUNE
|
||||
BATCH_SIZE = 128
|
||||
|
||||
# Setup for train dataset
|
||||
ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
|
||||
ds_train = ds_train.cache()
|
||||
ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples)
|
||||
ds_train = ds_train.batch(BATCH_SIZE)
|
||||
ds_train = ds_train.prefetch(AUTOTUNE)
|
||||
|
||||
model = keras.Sequential(
|
||||
[
|
||||
keras.Input((28, 28, 1)),
|
||||
layers.Conv2D(32, 3, activation="relu"),
|
||||
layers.Flatten(),
|
||||
tf.keras.layers.Dense(10, activation="softmax"),
|
||||
]
|
||||
)
|
||||
|
||||
save_callback = keras.callbacks.ModelCheckpoint(
|
||||
"checkpoint/", save_weights_only=True, monitor="train_acc", save_best_only=False,
|
||||
)
|
||||
|
||||
lr_scheduler = keras.callbacks.ReduceLROnPlateau(
|
||||
monitor="loss", factor=0.1, patience=3, mode="max", verbose=1
|
||||
)
|
||||
|
||||
|
||||
class OurOwnCallback(keras.callbacks.Callback):
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
if logs.get("accuracy") > 1:
|
||||
print("Accuracy over 70%, quitting training")
|
||||
self.model.stop_training = True
|
||||
|
||||
|
||||
model.compile(
|
||||
optimizer=keras.optimizers.Adam(0.01),
|
||||
loss=keras.losses.SparseCategoricalCrossentropy(),
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
|
||||
model.fit(
|
||||
ds_train,
|
||||
epochs=10,
|
||||
callbacks=[save_callback, lr_scheduler, OurOwnCallback()],
|
||||
verbose=2,
|
||||
)
|
||||
Reference in New Issue
Block a user