Initial commit

This commit is contained in:
Aladdin Persson
2021-01-30 21:49:15 +01:00
commit 65b8c80495
432 changed files with 1290844 additions and 0 deletions

View File

@@ -0,0 +1,23 @@
import pandas as pd
import torch
from torch.utils.data import TensorDataset
from torch.utils.data.dataset import random_split
from math import ceil
def get_data():
train_data = pd.read_csv("new_shiny_train.csv")
y = train_data["target"]
X = train_data.drop(["ID_code", "target"], axis=1)
X_tensor = torch.tensor(X.values, dtype=torch.float32)
y_tensor = torch.tensor(y.values, dtype=torch.float32)
ds = TensorDataset(X_tensor, y_tensor)
train_ds, val_ds = random_split(ds, [int(0.999*len(ds)), ceil(0.001*len(ds))])
test_data = pd.read_csv("new_shiny_test.csv")
test_ids = test_data["ID_code"]
X = test_data.drop(["ID_code"], axis=1)
X_tensor = torch.tensor(X.values, dtype=torch.float32)
y_tensor = torch.tensor(y.values, dtype=torch.float32)
test_ds = TensorDataset(X_tensor, y_tensor)
return train_ds, val_ds, test_ds, test_ids

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,55 @@
import torch
from sklearn import metrics
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from utils import get_predictions
from dataset import get_data
from torch.utils.data import DataLoader
import torch.nn.functional as F
class NN(nn.Module):
def __init__(self, input_size, hidden_dim):
super(NN, self).__init__()
self.bn = nn.BatchNorm1d(input_size)
self.fc1 = nn.Linear(2, hidden_dim)
self.fc2 = nn.Linear(input_size//2*hidden_dim, 1)
def forward(self, x):
N = x.shape[0]
x = self.bn(x)
orig_features = x[:, :200].unsqueeze(2) # (N, 200, 1)
new_features = x[:, 200:].unsqueeze(2) # (N, 200, 1)
x = torch.cat([orig_features, new_features], dim=2) # (N, 200, 2)
x = F.relu(self.fc1(x)).reshape(N, -1) # (N, 200*hidden_dim)
return torch.sigmoid(self.fc2(x)).view(-1)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = NN(input_size=400, hidden_dim=100).to(DEVICE)
optimizer = optim.Adam(model.parameters(), lr=2e-3, weight_decay=1e-4)
loss_fn = nn.BCELoss()
train_ds, val_ds, test_ds, test_ids = get_data()
train_loader = DataLoader(train_ds, batch_size=1024, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=1024)
test_loader = DataLoader(test_ds, batch_size=1024)
for epoch in range(20):
probabilities, true = get_predictions(val_loader, model, device=DEVICE)
print(f"VALIDATION ROC: {metrics.roc_auc_score(true, probabilities)}")
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(DEVICE)
targets = targets.to(DEVICE)
# forward
scores = model(data)
loss = loss_fn(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
from utils import get_submission
get_submission(model, test_loader, test_ids, DEVICE)

View File

@@ -0,0 +1,39 @@
import pandas as pd
import numpy as np
import torch
def get_predictions(loader, model, device):
model.eval()
saved_preds = []
true_labels = []
with torch.no_grad():
for x,y in loader:
x = x.to(device)
y = y.to(device)
scores = model(x)
saved_preds += scores.tolist()
true_labels += y.tolist()
model.train()
return saved_preds, true_labels
def get_submission(model, loader, test_ids, device):
all_preds = []
model.eval()
with torch.no_grad():
for x,y in loader:
print(x.shape)
x = x.to(device)
score = model(x)
prediction = score.float()
all_preds += prediction.tolist()
model.train()
df = pd.DataFrame({
"ID_code" : test_ids.values,
"target" : np.array(all_preds)
})
df.to_csv("sub.csv", index=False)