added some notes

This commit is contained in:
Aladdin Persson
2021-02-04 13:39:41 +01:00
parent fa6ab9161e
commit 2d876db44c
11 changed files with 191 additions and 1 deletions

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 410 KiB

View File

@@ -0,0 +1,182 @@
import torch
import torch.nn as nn
from math import ceil
base_model = [
# expand_ratio, channels, repeats, stride, kernel_size
[1, 16, 1, 1, 3],
[6, 24, 2, 2, 3],
[6, 40, 2, 2, 5],
[6, 80, 3, 2, 3],
[6, 112, 3, 1, 5],
[6, 192, 4, 2, 5],
[6, 320, 1, 1, 3],
]
phi_values = {
# tuple of: (phi_value, resolution, drop_rate)
"b0": (0, 224, 0.2), # alpha, beta, gamma, depth = alpha ** phi
"b1": (0.5, 240, 0.2),
"b2": (1, 260, 0.3),
"b3": (2, 300, 0.3),
"b4": (3, 380, 0.4),
"b5": (4, 456, 0.4),
"b6": (5, 528, 0.5),
"b7": (6, 600, 0.5),
}
class CNNBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, stride, padding, groups=1
):
super(CNNBlock, self).__init__()
self.cnn = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
)
self.bn = nn.BatchNorm2d(out_channels)
self.silu = nn.SiLU() # SiLU <-> Swish
def forward(self, x):
return self.silu(self.bn(self.cnn(x)))
class SqueezeExcitation(nn.Module):
def __init__(self, in_channels, reduced_dim):
super(SqueezeExcitation, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1), # C x H x W -> C x 1 x 1
nn.Conv2d(in_channels, reduced_dim, 1),
nn.SiLU(),
nn.Conv2d(reduced_dim, in_channels, 1),
nn.Sigmoid(),
)
def forward(self, x):
return x * self.se(x)
class InvertedResidualBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
expand_ratio,
reduction=4, # squeeze excitation
survival_prob=0.8, # for stochastic depth
):
super(InvertedResidualBlock, self).__init__()
self.survival_prob = 0.8
self.use_residual = in_channels == out_channels and stride == 1
hidden_dim = in_channels * expand_ratio
self.expand = in_channels != hidden_dim
reduced_dim = int(in_channels / reduction)
if self.expand:
self.expand_conv = CNNBlock(
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1,
)
self.conv = nn.Sequential(
CNNBlock(
hidden_dim, hidden_dim, kernel_size, stride, padding, groups=hidden_dim,
),
SqueezeExcitation(hidden_dim, reduced_dim),
nn.Conv2d(hidden_dim, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
)
def stochastic_depth(self, x):
if not self.training:
return x
binary_tensor = torch.rand(x.shape[0], 1, 1, 1, device=x.device) < self.survival_prob
return torch.div(x, self.survival_prob) * binary_tensor
def forward(self, inputs):
x = self.expand_conv(inputs) if self.expand else inputs
if self.use_residual:
return self.stochastic_depth(self.conv(x)) + inputs
else:
return self.conv(x)
class EfficientNet(nn.Module):
def __init__(self, version, num_classes):
super(EfficientNet, self).__init__()
width_factor, depth_factor, dropout_rate = self.calculate_factors(version)
last_channels = ceil(1280 * width_factor)
self.pool = nn.AdaptiveAvgPool2d(1)
self.features = self.create_features(width_factor, depth_factor, last_channels)
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate),
nn.Linear(last_channels, num_classes),
)
def calculate_factors(self, version, alpha=1.2, beta=1.1):
phi, res, drop_rate = phi_values[version]
depth_factor = alpha ** phi
width_factor = beta ** phi
return width_factor, depth_factor, drop_rate
def create_features(self, width_factor, depth_factor, last_channels):
channels = int(32 * width_factor)
features = [CNNBlock(3, channels, 3, stride=2, padding=1)]
in_channels = channels
for expand_ratio, channels, repeats, stride, kernel_size in base_model:
out_channels = 4*ceil(int(channels*width_factor) / 4)
layers_repeats = ceil(repeats * depth_factor)
for layer in range(layers_repeats):
features.append(
InvertedResidualBlock(
in_channels,
out_channels,
expand_ratio=expand_ratio,
stride = stride if layer == 0 else 1,
kernel_size=kernel_size,
padding=kernel_size//2, # if k=1:pad=0, k=3:pad=1, k=5:pad=2
)
)
in_channels = out_channels
features.append(
CNNBlock(in_channels, last_channels, kernel_size=1, stride=1, padding=0)
)
return nn.Sequential(*features)
def forward(self, x):
x = self.pool(self.features(x))
return self.classifier(x.view(x.shape[0], -1))
def test():
device = "cuda" if torch.cuda.is_available() else "cpu"
version = "b0"
phi, res, drop_rate = phi_values[version]
num_examples, num_classes = 4, 10
x = torch.randn((num_examples, 3, res, res)).to(device)
model = EfficientNet(
version=version,
num_classes=num_classes,
).to(device)
print(model(x).shape) # (num_examples, num_classes)
test()

View File

@@ -0,0 +1,7 @@
download the data from kaggle and put in folders similar to the video, specifically you should have 4
folders:
- train_images
- train_masks
- val_images
- val_masks

View File

@@ -0,0 +1 @@
it will put some saved preds here so you can see how it looks like

View File

@@ -22,7 +22,7 @@ NUM_WORKERS = 2
IMAGE_HEIGHT = 160 # 1280 originally
IMAGE_WIDTH = 240 # 1918 originally
PIN_MEMORY = True
LOAD_MODEL = True
LOAD_MODEL = False
TRAIN_IMG_DIR = "data/train_images/"
TRAIN_MASK_DIR = "data/train_masks/"
VAL_IMG_DIR = "data/val_images/"