mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
updated readme for docker
This commit is contained in:
65
README.md
65
README.md
@@ -142,32 +142,51 @@ If you have any specific video suggestion please make a comment on YouTube :)
|
||||
* [![Youtube Link][logo]](https://youtu.be/ea5Z1smiR3U) [Tutorial 20 - Classifying Skin Cancer](https://github.com/AladdinPerzon/Machine-Learning-Collection/tree/master/ML/TensorFlow/Basics/tutorial20-classify-cancer-beginner-project-example) **- Beginner Project Example**
|
||||
|
||||
## Docker Setup
|
||||
Follow the steps below to use Docker for setting up a consistent development environment:
|
||||
|
||||
1. **Install Docker**
|
||||
If you don't have Docker installed, use these links to install Docker for your system:
|
||||
- [Install Docker Engine](https://docs.docker.com/engine/install/)
|
||||
### Step 1: Install Docker
|
||||
|
||||
2. **Nvidia Container Toolkit (For GPU support)**
|
||||
If you want to utilize GPU acceleration with CUDA, install the Nvidia Container Toolkit:
|
||||
- [Nvidia Container Toolkit Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
||||
If you don't have Docker installed, follow the links below to install Docker for your system:
|
||||
- [Install Docker Engine](https://docs.docker.com/engine/install/)
|
||||
|
||||
3. **Build the Docker Image**
|
||||
Navigate to the directory containing the Dockerfile and run:
|
||||
```bash
|
||||
docker build -t aladdin-image .
|
||||
```
|
||||
### Step 2: Install Nvidia Container Toolkit (Optional)
|
||||
If you plan to use GPU acceleration with CUDA, install Nvidia Container Toolkit:
|
||||
|
||||
4. **Run the Docker Container**
|
||||
Once the image is built, start the container using the following command:
|
||||
```bash
|
||||
docker run -it \
|
||||
--gpus all \
|
||||
-v "${PWD}:/code" \
|
||||
-p 8080:8080 \
|
||||
--name "aladdin-container" \
|
||||
--env AUTHENTICATE_VIA_JUPYTER="mytoken" \
|
||||
aladdin-image
|
||||
```
|
||||
- [Nvidia Container Toolkit Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
||||
|
||||
### Step 3: Build the Docker Image
|
||||
Navigate to the directory containing the Dockerfile and build the Docker image with:
|
||||
|
||||
```bash
|
||||
docker build -t aladdin-image .
|
||||
```
|
||||
|
||||
### Step 4: Run the Docker Container in Detached Mode
|
||||
Run the following command to start the container in detached mode:
|
||||
|
||||
```bash
|
||||
docker run -d \
|
||||
--gpus all \
|
||||
-v "${PWD}:/code" \
|
||||
-p 8080:8080 \
|
||||
--name "aladdin-container" \
|
||||
--env AUTHENTICATE_VIA_JUPYTER="mytoken" \
|
||||
aladdin-image \
|
||||
tail -f /dev/null
|
||||
```
|
||||
|
||||
This will start a new Docker container named `aladdin-container` that will not exit immediately. The `-d` flag runs the container in detached mode, letting it run in the background.
|
||||
|
||||
### Step 5: Interact with the Docker Container
|
||||
To attach an interactive shell to the running container, use the command:
|
||||
|
||||
```bash
|
||||
docker exec -it aladdin-container /bin/bash
|
||||
```
|
||||
|
||||
You can now interact with your container using the bash shell.
|
||||
|
||||
### Additional Notes
|
||||
- If you wish to stop the container, you can do so with `docker stop aladdin-container`.
|
||||
- To start the container again after stopping, use `docker start aladdin-container`.
|
||||
- In case you need to remove the container, make sure it's stopped and then run `docker rm aladdin-container`.
|
||||
- To see the output from the container (logs), use `docker logs aladdin-container`.
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
# requirements.txt file with basic libraries to install for a machine learning workflow
|
||||
|
||||
numpy
|
||||
pandas
|
||||
scikit-learn
|
||||
@@ -5,24 +7,35 @@ matplotlib
|
||||
seaborn
|
||||
scipy
|
||||
|
||||
# Deep Learning
|
||||
# deep learning
|
||||
torchvision
|
||||
torchaudio
|
||||
transformers
|
||||
tensorboard
|
||||
lightning
|
||||
|
||||
# For gradient boosting machines (GBMs)
|
||||
# all you need is xgboost
|
||||
xgboost
|
||||
lightgbm
|
||||
|
||||
# For working with text data
|
||||
# nlp libraries
|
||||
nltk
|
||||
spacy
|
||||
|
||||
# For image processing tasks
|
||||
# image processing
|
||||
opencv-python-headless
|
||||
Pillow
|
||||
|
||||
# Jupyter Notebook (remove if you do not use it within the container)
|
||||
# data loading
|
||||
pyarrow
|
||||
|
||||
# model optimization/experiment tracking
|
||||
tensorboard
|
||||
wandb
|
||||
mlflow
|
||||
|
||||
# utilities
|
||||
tqdm
|
||||
|
||||
# notebooks
|
||||
jupyter
|
||||
ipywidgets
|
||||
ipywidgets
|
||||
|
||||
Reference in New Issue
Block a user