mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
|
|
import os
|
||
|
|
|
||
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||
|
|
import tensorflow as tf
|
||
|
|
from tensorflow import keras
|
||
|
|
from tensorflow.keras import layers
|
||
|
|
from tensorflow.keras.datasets import mnist
|
||
|
|
import tensorflow_hub as hub
|
||
|
|
|
||
|
|
# To Avoid GPU errors
|
||
|
|
physical_devices = tf.config.list_physical_devices("GPU")
|
||
|
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||
|
|
|
||
|
|
# ================================================ #
|
||
|
|
# Pretrained-Model #
|
||
|
|
# ================================================ #
|
||
|
|
|
||
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||
|
|
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
|
||
|
|
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
|
||
|
|
|
||
|
|
model = keras.models.load_model("pretrained")
|
||
|
|
|
||
|
|
# Freeze all model layer weights
|
||
|
|
model.trainable = False
|
||
|
|
|
||
|
|
# Can also set trainable for specific layers
|
||
|
|
for layer in model.layers:
|
||
|
|
# assert should be true because of one-liner above
|
||
|
|
assert layer.trainable == False
|
||
|
|
layer.trainable = False
|
||
|
|
|
||
|
|
print(model.summary()) # for finding base input and output
|
||
|
|
base_inputs = model.layers[0].input
|
||
|
|
base_output = model.layers[-2].output
|
||
|
|
output = layers.Dense(10)(base_output)
|
||
|
|
new_model = keras.Model(base_inputs, output)
|
||
|
|
|
||
|
|
# This model is actually identical to model we
|
||
|
|
# loaded (this is just for demonstration and
|
||
|
|
# and not something you would do in practice).
|
||
|
|
print(new_model.summary())
|
||
|
|
|
||
|
|
# As usual we do compile and fit, this time on new_model
|
||
|
|
new_model.compile(
|
||
|
|
optimizer=keras.optimizers.Adam(),
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
new_model.fit(x_train, y_train, batch_size=32, epochs=3, verbose=2)
|
||
|
|
|
||
|
|
# =================================================== #
|
||
|
|
# Pretrained Keras Model #
|
||
|
|
# =================================================== #
|
||
|
|
|
||
|
|
# Random data for demonstration (3 examples w. 3 classes)
|
||
|
|
x = tf.random.normal(shape=(3, 299, 299, 3))
|
||
|
|
y = tf.constant([0, 1, 2])
|
||
|
|
|
||
|
|
model = keras.applications.InceptionV3(include_top=True)
|
||
|
|
print(model.summary())
|
||
|
|
|
||
|
|
# for input you can also do model.input,
|
||
|
|
# then for base_outputs you can obviously
|
||
|
|
# choose other than simply removing the last one :)
|
||
|
|
base_inputs = model.layers[0].input
|
||
|
|
base_outputs = model.layers[-2].output
|
||
|
|
classifier = layers.Dense(3)(base_outputs)
|
||
|
|
new_model = keras.Model(inputs=base_inputs, outputs=classifier)
|
||
|
|
new_model.compile(
|
||
|
|
optimizer=keras.optimizers.Adam(),
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
print(new_model.summary())
|
||
|
|
new_model.fit(x, y, epochs=15, verbose=2)
|
||
|
|
|
||
|
|
# ================================================= #
|
||
|
|
# Pretrained Hub Model #
|
||
|
|
# ================================================= #
|
||
|
|
|
||
|
|
# Random data for demonstration (3 examples w. 3 classes)
|
||
|
|
x = tf.random.normal(shape=(3, 299, 299, 3))
|
||
|
|
y = tf.constant([0, 1, 2])
|
||
|
|
|
||
|
|
url = "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/4"
|
||
|
|
|
||
|
|
base_model = hub.KerasLayer(url, input_shape=(299, 299, 3))
|
||
|
|
model = keras.Sequential(
|
||
|
|
[
|
||
|
|
base_model,
|
||
|
|
layers.Dense(128, activation="relu"),
|
||
|
|
layers.Dense(64, activation="relu"),
|
||
|
|
layers.Dense(10),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
model.compile(
|
||
|
|
optimizer=keras.optimizers.Adam(),
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
model.fit(x, y, batch_size=32, epochs=15, verbose=2)
|