2021-03-06 11:01:51 +01:00
|
|
|
import torch
|
|
|
|
|
import albumentations as A
|
|
|
|
|
from albumentations.pytorch import ToTensorV2
|
|
|
|
|
|
2021-03-06 12:52:33 +01:00
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
TRAIN_DIR = "data/train"
|
|
|
|
|
VAL_DIR = "data/val"
|
2021-03-06 11:01:51 +01:00
|
|
|
LEARNING_RATE = 2e-4
|
|
|
|
|
BATCH_SIZE = 16
|
|
|
|
|
NUM_WORKERS = 2
|
|
|
|
|
IMAGE_SIZE = 256
|
|
|
|
|
CHANNELS_IMG = 3
|
|
|
|
|
L1_LAMBDA = 100
|
|
|
|
|
LAMBDA_GP = 10
|
|
|
|
|
NUM_EPOCHS = 500
|
2021-03-06 12:54:46 +01:00
|
|
|
LOAD_MODEL = False
|
|
|
|
|
SAVE_MODEL = False
|
2021-03-06 11:01:51 +01:00
|
|
|
CHECKPOINT_DISC = "disc.pth.tar"
|
|
|
|
|
CHECKPOINT_GEN = "gen.pth.tar"
|
|
|
|
|
|
|
|
|
|
both_transform = A.Compose(
|
|
|
|
|
[A.Resize(width=256, height=256),], additional_targets={"image0": "image"},
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
transform_only_input = A.Compose(
|
|
|
|
|
[
|
2021-03-06 12:52:33 +01:00
|
|
|
A.HorizontalFlip(p=0.5),
|
|
|
|
|
A.ColorJitter(p=0.2),
|
2021-03-06 11:01:51 +01:00
|
|
|
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,),
|
|
|
|
|
ToTensorV2(),
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
transform_only_mask = A.Compose(
|
|
|
|
|
[
|
|
|
|
|
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,),
|
|
|
|
|
ToTensorV2(),
|
|
|
|
|
]
|
|
|
|
|
)
|