mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
74 lines
1.9 KiB
Python
74 lines
1.9 KiB
Python
|
|
import os
|
||
|
|
import matplotlib.pyplot
|
||
|
|
|
||
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||
|
|
import tensorflow as tf
|
||
|
|
from tensorflow import keras
|
||
|
|
from tensorflow.keras import layers
|
||
|
|
import tensorflow_datasets as tfds
|
||
|
|
|
||
|
|
physical_devices = tf.config.list_physical_devices("GPU")
|
||
|
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||
|
|
|
||
|
|
(ds_train, ds_test), ds_info = tfds.load(
|
||
|
|
"mnist",
|
||
|
|
split=["train", "test"],
|
||
|
|
shuffle_files=True,
|
||
|
|
as_supervised=True, # will return tuple (img, label) otherwise dict
|
||
|
|
with_info=True, # able to get info about dataset
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
def normalize_img(image, label):
|
||
|
|
"""Normalizes images"""
|
||
|
|
return tf.cast(image, tf.float32) / 255.0, label
|
||
|
|
|
||
|
|
|
||
|
|
AUTOTUNE = tf.data.experimental.AUTOTUNE
|
||
|
|
BATCH_SIZE = 128
|
||
|
|
|
||
|
|
# Setup for train dataset
|
||
|
|
ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
|
||
|
|
ds_train = ds_train.cache()
|
||
|
|
ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples)
|
||
|
|
ds_train = ds_train.batch(BATCH_SIZE)
|
||
|
|
ds_train = ds_train.prefetch(AUTOTUNE)
|
||
|
|
|
||
|
|
model = keras.Sequential(
|
||
|
|
[
|
||
|
|
keras.Input((28, 28, 1)),
|
||
|
|
layers.Conv2D(32, 3, activation="relu"),
|
||
|
|
layers.Flatten(),
|
||
|
|
tf.keras.layers.Dense(10, activation="softmax"),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
save_callback = keras.callbacks.ModelCheckpoint(
|
||
|
|
"checkpoint/", save_weights_only=True, monitor="train_acc", save_best_only=False,
|
||
|
|
)
|
||
|
|
|
||
|
|
lr_scheduler = keras.callbacks.ReduceLROnPlateau(
|
||
|
|
monitor="loss", factor=0.1, patience=3, mode="max", verbose=1
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
class OurOwnCallback(keras.callbacks.Callback):
|
||
|
|
def on_epoch_end(self, epoch, logs=None):
|
||
|
|
if logs.get("accuracy") > 1:
|
||
|
|
print("Accuracy over 70%, quitting training")
|
||
|
|
self.model.stop_training = True
|
||
|
|
|
||
|
|
|
||
|
|
model.compile(
|
||
|
|
optimizer=keras.optimizers.Adam(0.01),
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
model.fit(
|
||
|
|
ds_train,
|
||
|
|
epochs=10,
|
||
|
|
callbacks=[save_callback, lr_scheduler, OurOwnCallback()],
|
||
|
|
verbose=2,
|
||
|
|
)
|