mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
|
|
import os
|
||
|
|
|
||
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||
|
|
|
||
|
|
import tensorflow as tf
|
||
|
|
from tensorflow import keras
|
||
|
|
from tensorflow.keras import layers
|
||
|
|
from tensorflow.keras.datasets import cifar10
|
||
|
|
|
||
|
|
physical_devices = tf.config.list_physical_devices("GPU")
|
||
|
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||
|
|
|
||
|
|
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
|
||
|
|
x_train = x_train.astype("float32") / 255.0
|
||
|
|
x_test = x_test.astype("float32") / 255.0
|
||
|
|
|
||
|
|
model = keras.Sequential(
|
||
|
|
[
|
||
|
|
keras.Input(shape=(32, 32, 3)),
|
||
|
|
layers.Conv2D(32, 3, padding="valid", activation="relu"),
|
||
|
|
layers.MaxPooling2D(),
|
||
|
|
layers.Conv2D(64, 3, activation="relu"),
|
||
|
|
layers.MaxPooling2D(),
|
||
|
|
layers.Conv2D(128, 3, activation="relu"),
|
||
|
|
layers.Flatten(),
|
||
|
|
layers.Dense(64, activation="relu"),
|
||
|
|
layers.Dense(10),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
def my_model():
|
||
|
|
inputs = keras.Input(shape=(32, 32, 3))
|
||
|
|
x = layers.Conv2D(32, 3)(inputs)
|
||
|
|
x = layers.BatchNormalization()(x)
|
||
|
|
x = keras.activations.relu(x)
|
||
|
|
x = layers.MaxPooling2D()(x)
|
||
|
|
x = layers.Conv2D(64, 3)(x)
|
||
|
|
x = layers.BatchNormalization()(x)
|
||
|
|
x = keras.activations.relu(x)
|
||
|
|
x = layers.MaxPooling2D()(x)
|
||
|
|
x = layers.Conv2D(128, 3)(x)
|
||
|
|
x = layers.BatchNormalization()(x)
|
||
|
|
x = keras.activations.relu(x)
|
||
|
|
x = layers.Flatten()(x)
|
||
|
|
x = layers.Dense(64, activation="relu")(x)
|
||
|
|
outputs = layers.Dense(10)(x)
|
||
|
|
model = keras.Model(inputs=inputs, outputs=outputs)
|
||
|
|
return model
|
||
|
|
|
||
|
|
|
||
|
|
model = my_model()
|
||
|
|
model.compile(
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||
|
|
optimizer=keras.optimizers.Adam(lr=3e-4),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
model.fit(x_train, y_train, batch_size=64, epochs=10, verbose=2)
|
||
|
|
model.evaluate(x_test, y_test, batch_size=64, verbose=2)
|