mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
108 lines
3.2 KiB
Python
108 lines
3.2 KiB
Python
|
|
"""
|
||
|
|
Example code of how to use a learning rate scheduler simple, in this
|
||
|
|
case with a (very) small and simple Feedforward Network training on MNIST
|
||
|
|
dataset with a learning rate scheduler. In this case ReduceLROnPlateau
|
||
|
|
scheduler is used, but can easily be changed to any of the other schedulers
|
||
|
|
available.
|
||
|
|
|
||
|
|
Video explanation: https://youtu.be/P31hB37g4Ak
|
||
|
|
Got any questions leave a comment on youtube :)
|
||
|
|
|
||
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||
|
|
* 2020-04-10 Initial programming
|
||
|
|
|
||
|
|
"""
|
||
|
|
|
||
|
|
# Imports
|
||
|
|
import torch
|
||
|
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||
|
|
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
||
|
|
from torch.utils.data import (
|
||
|
|
DataLoader,
|
||
|
|
) # Gives easier dataset managment and creates mini batches
|
||
|
|
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
||
|
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
||
|
|
|
||
|
|
# Set device
|
||
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
|
|
||
|
|
# Hyperparameters
|
||
|
|
num_classes = 10
|
||
|
|
learning_rate = 0.1
|
||
|
|
batch_size = 128
|
||
|
|
num_epochs = 100
|
||
|
|
|
||
|
|
# Define a very simple model
|
||
|
|
model = nn.Sequential(nn.Linear(784, 50), nn.ReLU(), nn.Linear(50, 10)).to(device)
|
||
|
|
|
||
|
|
# Load Data
|
||
|
|
train_dataset = datasets.MNIST(
|
||
|
|
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
|
||
|
|
)
|
||
|
|
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||
|
|
|
||
|
|
# Loss and optimizer
|
||
|
|
criterion = nn.CrossEntropyLoss()
|
||
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||
|
|
|
||
|
|
# Define Scheduler
|
||
|
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||
|
|
optimizer, factor=0.1, patience=5, verbose=True
|
||
|
|
)
|
||
|
|
|
||
|
|
# Train Network
|
||
|
|
for epoch in range(1, num_epochs):
|
||
|
|
losses = []
|
||
|
|
|
||
|
|
for batch_idx, (data, targets) in enumerate(train_loader):
|
||
|
|
# Get data to cuda if possible
|
||
|
|
data = data.reshape(data.shape[0], -1)
|
||
|
|
data = data.to(device=device)
|
||
|
|
targets = targets.to(device=device)
|
||
|
|
|
||
|
|
# forward
|
||
|
|
scores = model(data)
|
||
|
|
loss = criterion(scores, targets)
|
||
|
|
|
||
|
|
losses.append(loss.item())
|
||
|
|
|
||
|
|
# backward
|
||
|
|
loss.backward()
|
||
|
|
|
||
|
|
# gradient descent or adam step
|
||
|
|
# scheduler.step(loss)
|
||
|
|
optimizer.step()
|
||
|
|
optimizer.zero_grad()
|
||
|
|
|
||
|
|
mean_loss = sum(losses) / len(losses)
|
||
|
|
|
||
|
|
# After each epoch do scheduler.step, note in this scheduler we need to send
|
||
|
|
# in loss for that epoch!
|
||
|
|
scheduler.step(mean_loss)
|
||
|
|
print(f"Cost at epoch {epoch} is {mean_loss}")
|
||
|
|
|
||
|
|
# Check accuracy on training & test to see how good our model
|
||
|
|
def check_accuracy(loader, model):
|
||
|
|
num_correct = 0
|
||
|
|
num_samples = 0
|
||
|
|
model.eval()
|
||
|
|
|
||
|
|
with torch.no_grad():
|
||
|
|
for x, y in loader:
|
||
|
|
x = x.to(device=device)
|
||
|
|
y = y.to(device=device)
|
||
|
|
|
||
|
|
scores = model(x)
|
||
|
|
_, predictions = scores.max(1)
|
||
|
|
num_correct += (predictions == y).sum()
|
||
|
|
num_samples += predictions.size(0)
|
||
|
|
|
||
|
|
print(
|
||
|
|
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
|
||
|
|
)
|
||
|
|
|
||
|
|
model.train()
|
||
|
|
|
||
|
|
|
||
|
|
check_accuracy(train_loader, model)
|