mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
97 lines
2.8 KiB
Python
97 lines
2.8 KiB
Python
|
|
import torch
|
||
|
|
from tqdm import tqdm
|
||
|
|
import torch.nn as nn
|
||
|
|
import torch.optim as optim
|
||
|
|
import torchvision.transforms as transforms
|
||
|
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
from utils import save_checkpoint, load_checkpoint, print_examples
|
||
|
|
from get_loader import get_loader
|
||
|
|
from model import CNNtoRNN
|
||
|
|
|
||
|
|
|
||
|
|
def train():
|
||
|
|
transform = transforms.Compose(
|
||
|
|
[
|
||
|
|
transforms.Resize((356, 356)),
|
||
|
|
transforms.RandomCrop((299, 299)),
|
||
|
|
transforms.ToTensor(),
|
||
|
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
train_loader, dataset = get_loader(
|
||
|
|
root_folder="flickr8k/images",
|
||
|
|
annotation_file="flickr8k/captions.txt",
|
||
|
|
transform=transform,
|
||
|
|
num_workers=2,
|
||
|
|
)
|
||
|
|
|
||
|
|
torch.backends.cudnn.benchmark = True
|
||
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
|
load_model = False
|
||
|
|
save_model = False
|
||
|
|
train_CNN = False
|
||
|
|
|
||
|
|
# Hyperparameters
|
||
|
|
embed_size = 256
|
||
|
|
hidden_size = 256
|
||
|
|
vocab_size = len(dataset.vocab)
|
||
|
|
num_layers = 1
|
||
|
|
learning_rate = 3e-4
|
||
|
|
num_epochs = 100
|
||
|
|
|
||
|
|
# for tensorboard
|
||
|
|
writer = SummaryWriter("runs/flickr")
|
||
|
|
step = 0
|
||
|
|
|
||
|
|
# initialize model, loss etc
|
||
|
|
model = CNNtoRNN(embed_size, hidden_size, vocab_size, num_layers).to(device)
|
||
|
|
criterion = nn.CrossEntropyLoss(ignore_index=dataset.vocab.stoi["<PAD>"])
|
||
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||
|
|
|
||
|
|
# Only finetune the CNN
|
||
|
|
for name, param in model.encoderCNN.inception.named_parameters():
|
||
|
|
if "fc.weight" in name or "fc.bias" in name:
|
||
|
|
param.requires_grad = True
|
||
|
|
else:
|
||
|
|
param.requires_grad = train_CNN
|
||
|
|
|
||
|
|
if load_model:
|
||
|
|
step = load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)
|
||
|
|
|
||
|
|
model.train()
|
||
|
|
|
||
|
|
for epoch in range(num_epochs):
|
||
|
|
# Uncomment the line below to see a couple of test cases
|
||
|
|
# print_examples(model, device, dataset)
|
||
|
|
|
||
|
|
if save_model:
|
||
|
|
checkpoint = {
|
||
|
|
"state_dict": model.state_dict(),
|
||
|
|
"optimizer": optimizer.state_dict(),
|
||
|
|
"step": step,
|
||
|
|
}
|
||
|
|
save_checkpoint(checkpoint)
|
||
|
|
|
||
|
|
for idx, (imgs, captions) in tqdm(
|
||
|
|
enumerate(train_loader), total=len(train_loader), leave=False
|
||
|
|
):
|
||
|
|
imgs = imgs.to(device)
|
||
|
|
captions = captions.to(device)
|
||
|
|
|
||
|
|
outputs = model(imgs, captions[:-1])
|
||
|
|
loss = criterion(
|
||
|
|
outputs.reshape(-1, outputs.shape[2]), captions.reshape(-1)
|
||
|
|
)
|
||
|
|
|
||
|
|
writer.add_scalar("Training loss", loss.item(), global_step=step)
|
||
|
|
step += 1
|
||
|
|
|
||
|
|
optimizer.zero_grad()
|
||
|
|
loss.backward(loss)
|
||
|
|
optimizer.step()
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
train()
|