Files
Machine-Learning-Collection/ML/Pytorch/more_advanced/GANs/model_utils.py

77 lines
2.5 KiB
Python
Raw Normal View History

2021-01-30 21:49:15 +01:00
"""
Discriminator and Generator implementation from DCGAN paper
that we import in the main (DCGAN_mnist.py) file.
"""
import torch
import torch.nn as nn
class Discriminator(nn.Module):
def __init__(self, channels_img, features_d):
super(Discriminator, self).__init__()
self.net = nn.Sequential(
# N x channels_img x 64 x 64
nn.Conv2d(channels_img, features_d, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2),
# N x features_d x 32 x 32
nn.Conv2d(features_d, features_d * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(features_d * 2),
nn.LeakyReLU(0.2),
nn.Conv2d(
features_d * 2, features_d * 4, kernel_size=4, stride=2, padding=1
),
nn.BatchNorm2d(features_d * 4),
nn.LeakyReLU(0.2),
nn.Conv2d(
features_d * 4, features_d * 8, kernel_size=4, stride=2, padding=1
),
nn.BatchNorm2d(features_d * 8),
nn.LeakyReLU(0.2),
# N x features_d*8 x 4 x 4
nn.Conv2d(features_d * 8, 1, kernel_size=4, stride=2, padding=0),
# N x 1 x 1 x 1
nn.Sigmoid(),
)
def forward(self, x):
return self.net(x)
class Generator(nn.Module):
def __init__(self, channels_noise, channels_img, features_g):
super(Generator, self).__init__()
self.net = nn.Sequential(
# N x channels_noise x 1 x 1
nn.ConvTranspose2d(
channels_noise, features_g * 16, kernel_size=4, stride=1, padding=0
),
nn.BatchNorm2d(features_g * 16),
nn.ReLU(),
# N x features_g*16 x 4 x 4
nn.ConvTranspose2d(
features_g * 16, features_g * 8, kernel_size=4, stride=2, padding=1
),
nn.BatchNorm2d(features_g * 8),
nn.ReLU(),
nn.ConvTranspose2d(
features_g * 8, features_g * 4, kernel_size=4, stride=2, padding=1
),
nn.BatchNorm2d(features_g * 4),
nn.ReLU(),
nn.ConvTranspose2d(
features_g * 4, features_g * 2, kernel_size=4, stride=2, padding=1
),
nn.BatchNorm2d(features_g * 2),
nn.ReLU(),
nn.ConvTranspose2d(
features_g * 2, channels_img, kernel_size=4, stride=2, padding=1
),
# N x channels_img x 64 x 64
nn.Tanh(),
)
def forward(self, x):
return self.net(x)