Files
Machine-Learning-Collection/ML/Pytorch/Basics/pytorch_bidirectional_lstm.py

126 lines
3.6 KiB
Python
Raw Normal View History

2021-01-30 21:49:15 +01:00
"""
Example code of a simple bidirectional LSTM on the MNIST dataset.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-05-09 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 28
sequence_length = 28
num_layers = 2
hidden_size = 256
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 2
# Create a bidirectional LSTM
class BRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(
input_size, hidden_size, num_layers, batch_first=True, bidirectional=True
)
self.fc = nn.Linear(hidden_size * 2, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = BRNN(input_size, hidden_size, num_layers, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device).squeeze(1)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device).squeeze(1)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy \
{float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)