Files
Machine-Learning-Collection/ML/Pytorch/pytorch_lightning/9. Profiler/dataset.py

65 lines
1.9 KiB
Python
Raw Normal View History

import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.Compose([
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)