mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
97 lines
2.8 KiB
Python
97 lines
2.8 KiB
Python
|
|
"""
|
||
|
|
Implementation of SVM using cvxopt package. Implementation uses
|
||
|
|
soft margin and I've defined linear, polynomial and gaussian kernels.
|
||
|
|
|
||
|
|
To understand the theory (which is a bit challenging) I recommend reading the following:
|
||
|
|
http://cs229.stanford.edu/notes/cs229-notes3.pdf
|
||
|
|
https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU (Lectures 6,7 by Andrew Ng)
|
||
|
|
|
||
|
|
To understand how to reformulate the optimization problem we obtain
|
||
|
|
to get the input to cvxopt QP solver this blogpost can be useful:
|
||
|
|
https://xavierbourretsicotte.github.io/SVM_implementation.html
|
||
|
|
|
||
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||
|
|
* 2020-04-26 Initial coding
|
||
|
|
|
||
|
|
"""
|
||
|
|
|
||
|
|
import numpy as np
|
||
|
|
import cvxopt
|
||
|
|
from utils import create_dataset, plot_contour
|
||
|
|
|
||
|
|
|
||
|
|
def linear(x, z):
|
||
|
|
return np.dot(x, z.T)
|
||
|
|
|
||
|
|
|
||
|
|
def polynomial(x, z, p=5):
|
||
|
|
return (1 + np.dot(x, z.T)) ** p
|
||
|
|
|
||
|
|
|
||
|
|
def gaussian(x, z, sigma=0.1):
|
||
|
|
return np.exp(-np.linalg.norm(x - z, axis=1) ** 2 / (2 * (sigma ** 2)))
|
||
|
|
|
||
|
|
|
||
|
|
class SVM:
|
||
|
|
def __init__(self, kernel=gaussian, C=1):
|
||
|
|
self.kernel = kernel
|
||
|
|
self.C = C
|
||
|
|
|
||
|
|
def fit(self, X, y):
|
||
|
|
self.y = y
|
||
|
|
self.X = X
|
||
|
|
m, n = X.shape
|
||
|
|
|
||
|
|
# Calculate Kernel
|
||
|
|
self.K = np.zeros((m, m))
|
||
|
|
for i in range(m):
|
||
|
|
self.K[i, :] = self.kernel(X[i, np.newaxis], self.X)
|
||
|
|
|
||
|
|
# Solve with cvxopt final QP needs to be reformulated
|
||
|
|
# to match the input form for cvxopt.solvers.qp
|
||
|
|
P = cvxopt.matrix(np.outer(y, y) * self.K)
|
||
|
|
q = cvxopt.matrix(-np.ones((m, 1)))
|
||
|
|
G = cvxopt.matrix(np.vstack((np.eye(m) * -1, np.eye(m))))
|
||
|
|
h = cvxopt.matrix(np.hstack((np.zeros(m), np.ones(m) * self.C)))
|
||
|
|
A = cvxopt.matrix(y, (1, m), "d")
|
||
|
|
b = cvxopt.matrix(np.zeros(1))
|
||
|
|
cvxopt.solvers.options["show_progress"] = False
|
||
|
|
sol = cvxopt.solvers.qp(P, q, G, h, A, b)
|
||
|
|
self.alphas = np.array(sol["x"])
|
||
|
|
|
||
|
|
def predict(self, X):
|
||
|
|
y_predict = np.zeros((X.shape[0]))
|
||
|
|
sv = self.get_parameters(self.alphas)
|
||
|
|
|
||
|
|
for i in range(X.shape[0]):
|
||
|
|
y_predict[i] = np.sum(
|
||
|
|
self.alphas[sv]
|
||
|
|
* self.y[sv, np.newaxis]
|
||
|
|
* self.kernel(X[i], self.X[sv])[:, np.newaxis]
|
||
|
|
)
|
||
|
|
|
||
|
|
return np.sign(y_predict + self.b)
|
||
|
|
|
||
|
|
def get_parameters(self, alphas):
|
||
|
|
threshold = 1e-5
|
||
|
|
|
||
|
|
sv = ((alphas > threshold) * (alphas < self.C)).flatten()
|
||
|
|
self.w = np.dot(X[sv].T, alphas[sv] * self.y[sv, np.newaxis])
|
||
|
|
self.b = np.mean(
|
||
|
|
self.y[sv, np.newaxis]
|
||
|
|
- self.alphas[sv] * self.y[sv, np.newaxis] * self.K[sv, sv][:, np.newaxis]
|
||
|
|
)
|
||
|
|
return sv
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
np.random.seed(1)
|
||
|
|
X, y = create_dataset(N=50)
|
||
|
|
|
||
|
|
svm = SVM(kernel=gaussian)
|
||
|
|
svm.fit(X, y)
|
||
|
|
y_pred = svm.predict(X)
|
||
|
|
plot_contour(X, y, svm)
|
||
|
|
|
||
|
|
print(f"Accuracy: {sum(y==y_pred)/y.shape[0]}")
|