mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
165 lines
5.4 KiB
Python
165 lines
5.4 KiB
Python
|
|
""" Training of ProGAN using WGAN-GP loss"""
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn as nn
|
||
|
|
import torch.optim as optim
|
||
|
|
import torchvision
|
||
|
|
import torchvision.datasets as datasets
|
||
|
|
import torchvision.transforms as transforms
|
||
|
|
from torch.utils.data import DataLoader
|
||
|
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
from utils import gradient_penalty, plot_to_tensorboard, save_checkpoint, load_checkpoint
|
||
|
|
from model import Discriminator, Generator
|
||
|
|
from math import log2
|
||
|
|
from tqdm import tqdm
|
||
|
|
import time
|
||
|
|
|
||
|
|
torch.backends.cudnn.benchmarks = True
|
||
|
|
torch.manual_seed(0)
|
||
|
|
|
||
|
|
# Hyperparameters etc.
|
||
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
|
LEARNING_RATE = 1e-4
|
||
|
|
BATCH_SIZES = [128, 128, 64, 16, 8, 4, 2, 2, 1]
|
||
|
|
IMAGE_SIZE = 128
|
||
|
|
CHANNELS_IMG = 3
|
||
|
|
Z_DIM = 128
|
||
|
|
IN_CHANNELS = 128
|
||
|
|
CRITIC_ITERATIONS = 1
|
||
|
|
LAMBDA_GP = 10
|
||
|
|
NUM_STEPS = int(log2(IMAGE_SIZE / 4)) + 1
|
||
|
|
PROGRESSIVE_EPOCHS = [2 ** i for i in range(int(log2(IMAGE_SIZE / 4) + 1))]
|
||
|
|
PROGRESSIVE_EPOCHS = [8 for i in range(int(log2(IMAGE_SIZE / 4) + 1))]
|
||
|
|
fixed_noise = torch.randn(8, Z_DIM, 1, 1).to(device)
|
||
|
|
NUM_WORKERS = 4
|
||
|
|
|
||
|
|
def get_loader(image_size):
|
||
|
|
transform = transforms.Compose(
|
||
|
|
[
|
||
|
|
transforms.Resize((image_size, image_size)),
|
||
|
|
transforms.ToTensor(),
|
||
|
|
transforms.Normalize(
|
||
|
|
[0.5 for _ in range(CHANNELS_IMG)],
|
||
|
|
[0.5 for _ in range(CHANNELS_IMG)],
|
||
|
|
),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
batch_size = BATCH_SIZES[int(log2(image_size/4))]
|
||
|
|
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transform)
|
||
|
|
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=NUM_WORKERS, pin_memory=True)
|
||
|
|
return loader, dataset
|
||
|
|
|
||
|
|
def train_fn(
|
||
|
|
critic,
|
||
|
|
gen,
|
||
|
|
loader,
|
||
|
|
dataset,
|
||
|
|
step,
|
||
|
|
alpha,
|
||
|
|
opt_critic,
|
||
|
|
opt_gen,
|
||
|
|
tensorboard_step,
|
||
|
|
writer,
|
||
|
|
):
|
||
|
|
start = time.time()
|
||
|
|
total_time = 0
|
||
|
|
training = tqdm(loader, leave=True)
|
||
|
|
for batch_idx, (real, _) in enumerate(training):
|
||
|
|
real = real.to(device)
|
||
|
|
cur_batch_size = real.shape[0]
|
||
|
|
model_start = time.time()
|
||
|
|
|
||
|
|
# Train Critic: max E[critic(real)] - E[critic(fake)]
|
||
|
|
# which is equivalent to minimizing the negative of the expression
|
||
|
|
for _ in range(CRITIC_ITERATIONS):
|
||
|
|
critic.zero_grad()
|
||
|
|
noise = torch.randn(cur_batch_size, Z_DIM, 1, 1).to(device)
|
||
|
|
fake = gen(noise, alpha, step)
|
||
|
|
critic_real = critic(real, alpha, step).reshape(-1)
|
||
|
|
critic_fake = critic(fake, alpha, step).reshape(-1)
|
||
|
|
gp = gradient_penalty(critic, real, fake, alpha, step, device=device)
|
||
|
|
loss_critic = (
|
||
|
|
-(torch.mean(critic_real) - torch.mean(critic_fake))
|
||
|
|
+ LAMBDA_GP * gp
|
||
|
|
)
|
||
|
|
loss_critic.backward(retain_graph=True)
|
||
|
|
opt_critic.step()
|
||
|
|
|
||
|
|
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
|
||
|
|
gen.zero_grad()
|
||
|
|
fake = gen(noise, alpha, step)
|
||
|
|
gen_fake = critic(fake, alpha, step).reshape(-1)
|
||
|
|
loss_gen = -torch.mean(gen_fake)
|
||
|
|
loss_gen.backward()
|
||
|
|
opt_gen.step()
|
||
|
|
|
||
|
|
# Update alpha and ensure less than 1
|
||
|
|
alpha += cur_batch_size / (
|
||
|
|
(PROGRESSIVE_EPOCHS[step]*0.5) * len(dataset) # - step
|
||
|
|
)
|
||
|
|
alpha = min(alpha, 1)
|
||
|
|
total_time += time.time()-model_start
|
||
|
|
|
||
|
|
if batch_idx % 300 == 0:
|
||
|
|
with torch.no_grad():
|
||
|
|
fixed_fakes = gen(fixed_noise, alpha, step)
|
||
|
|
plot_to_tensorboard(
|
||
|
|
writer, loss_critic, loss_gen, real, fixed_fakes, tensorboard_step
|
||
|
|
)
|
||
|
|
tensorboard_step += 1
|
||
|
|
|
||
|
|
print(f'Fraction spent on model training: {total_time/(time.time()-start)}')
|
||
|
|
return tensorboard_step, alpha
|
||
|
|
|
||
|
|
|
||
|
|
def main():
|
||
|
|
# initialize gen and disc, note: discriminator should be called critic,
|
||
|
|
# according to WGAN paper (since it no longer outputs between [0, 1])
|
||
|
|
gen = Generator(Z_DIM, IN_CHANNELS, img_size=IMAGE_SIZE, img_channels=CHANNELS_IMG).to(device)
|
||
|
|
critic = Discriminator(IMAGE_SIZE, Z_DIM, IN_CHANNELS, img_channels=CHANNELS_IMG).to(device)
|
||
|
|
|
||
|
|
# initializate optimizer
|
||
|
|
opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.99))
|
||
|
|
opt_critic = optim.Adam(critic.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.99))
|
||
|
|
|
||
|
|
# for tensorboard plotting
|
||
|
|
writer = SummaryWriter(f"logs/gan")
|
||
|
|
|
||
|
|
load_checkpoint(torch.load("celeba_wgan_gp.pth.tar"), gen, critic)
|
||
|
|
gen.train()
|
||
|
|
critic.train()
|
||
|
|
|
||
|
|
tensorboard_step = 0
|
||
|
|
for step, num_epochs in enumerate(PROGRESSIVE_EPOCHS):
|
||
|
|
alpha = 0.01
|
||
|
|
if step < 3:
|
||
|
|
continue
|
||
|
|
|
||
|
|
if step == 4:
|
||
|
|
print(f"Img size is: {4*2**step}")
|
||
|
|
|
||
|
|
loader, dataset = get_loader(4 * 2 ** step)
|
||
|
|
for epoch in range(num_epochs):
|
||
|
|
print(f"Epoch [{epoch+1}/{num_epochs}]")
|
||
|
|
tensorboard_step, alpha = train_fn(
|
||
|
|
critic,
|
||
|
|
gen,
|
||
|
|
loader,
|
||
|
|
dataset,
|
||
|
|
step,
|
||
|
|
alpha,
|
||
|
|
opt_critic,
|
||
|
|
opt_gen,
|
||
|
|
tensorboard_step,
|
||
|
|
writer,
|
||
|
|
)
|
||
|
|
|
||
|
|
checkpoint = {'gen': gen.state_dict(),
|
||
|
|
'critic': critic.state_dict(),
|
||
|
|
'opt_gen': opt_gen.state_dict(),
|
||
|
|
'opt_critic': opt_critic.state_dict()}
|
||
|
|
|
||
|
|
save_checkpoint(checkpoint)
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
main()
|