Files
Machine-Learning-Collection/ML/Pytorch/GANs/StyleGAN/utils.py

127 lines
4.4 KiB
Python
Raw Normal View History

2021-05-15 14:58:41 +02:00
import torch
import random
import numpy as np
import os
import torchvision
import torch.nn as nn
import warnings
# Print losses occasionally and print to tensorboard
def plot_to_tensorboard(
writer, loss_critic, loss_gen, real, fake, tensorboard_step
):
writer.add_scalar("Loss Critic", loss_critic, global_step=tensorboard_step)
with torch.no_grad():
# take out (up to) 32 examples
img_grid_real = torchvision.utils.make_grid(real[:8], normalize=True)
img_grid_fake = torchvision.utils.make_grid(fake[:8], normalize=True)
writer.add_image("Real", img_grid_real, global_step=tensorboard_step)
writer.add_image("Fake", img_grid_fake, global_step=tensorboard_step)
def gradient_penalty(critic, real, fake, alpha, train_step, device="cpu"):
BATCH_SIZE, C, H, W = real.shape
beta = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device)
interpolated_images = real * beta + fake.detach() * (1 - beta)
interpolated_images.requires_grad_(True)
# Calculate critic scores
mixed_scores = critic(interpolated_images, alpha, train_step)
# Take the gradient of the scores with respect to the images
gradient = torch.autograd.grad(
inputs=interpolated_images,
outputs=mixed_scores,
grad_outputs=torch.ones_like(mixed_scores),
create_graph=True,
retain_graph=True,
)[0]
gradient = gradient.view(gradient.shape[0], -1)
gradient_norm = gradient.norm(2, dim=1)
gradient_penalty = torch.mean((gradient_norm - 1) ** 2)
return gradient_penalty
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, filename)
def load_checkpoint(checkpoint_file, model, optimizer, lr):
print("=> Loading checkpoint")
checkpoint = torch.load(checkpoint_file, map_location="cuda")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
# If we don't do this then it will just have learning rate of old checkpoint
# and it will lead to many hours of debugging \:
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def seed_everything(seed=42):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class EMA:
# Found this useful (thanks alexis-jacq):
# https://discuss.pytorch.org/t/how-to-apply-exponential-moving-average-decay-for-variables/10856/3
def __init__(self, gamma=0.99, save=True, save_frequency=100, save_filename="ema_weights.pth"):
"""
Initialize the weight to which we will do the
exponential moving average and the dictionary
where we store the model parameters
"""
self.gamma = gamma
self.registered = {}
self.save_filename = save_filename
self.save_frequency = save_frequency
self.count = 0
if save_filename in os.listdir("."):
self.registered = torch.load(self.save_filename)
if not save:
warnings.warn("Note that the exponential moving average weights will not be saved to a .pth file!")
def register_weights(self, model):
"""
Registers the weights of the model which will
later be used when we take the moving average
"""
for name, param in model.named_parameters():
if param.requires_grad:
self.registered[name] = param.clone().detach()
def __call__(self, model):
self.count += 1
for name, param in model.named_parameters():
if param.requires_grad:
new_weight = param.clone().detach() if name not in self.registered else self.gamma * param + (1 - self.gamma) * self.registered[name]
self.registered[name] = new_weight
if self.count % self.save_frequency == 0:
self.save_ema_weights()
def copy_weights_to(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
param.data = self.registered[name]
def save_ema_weights(self):
torch.save(self.registered, self.save_filename)