Files

81 lines
2.3 KiB
Python
Raw Permalink Normal View History

2021-01-30 21:49:15 +01:00
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
import tensorflow_datasets as tfds
physical_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
(ds_train, ds_test), ds_info = tfds.load(
"mnist",
split=["train", "test"],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
"""Normalizes images"""
return tf.cast(image, tf.float32) / 255.0, label
AUTOTUNE = tf.data.experimental.AUTOTUNE
BATCH_SIZE = 128
# Setup for train dataset
ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples)
ds_train = ds_train.batch(BATCH_SIZE)
ds_train = ds_train.prefetch(AUTOTUNE)
# Setup for test Dataset
ds_test = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
ds_test = ds_train.batch(128)
ds_test = ds_train.prefetch(AUTOTUNE)
model = keras.Sequential(
[
keras.Input((28, 28, 1)),
layers.Conv2D(32, 3, activation="relu"),
layers.Flatten(),
layers.Dense(10, activation="softmax"),
]
)
num_epochs = 5
optimizer = keras.optimizers.Adam()
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
acc_metric = keras.metrics.SparseCategoricalAccuracy()
# Training Loop
for epoch in range(num_epochs):
print(f"\nStart of Training Epoch {epoch}")
for batch_idx, (x_batch, y_batch) in enumerate(ds_train):
with tf.GradientTape() as tape:
y_pred = model(x_batch, training=True)
loss = loss_fn(y_batch, y_pred)
gradients = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
acc_metric.update_state(y_batch, y_pred)
train_acc = acc_metric.result()
print(f"Accuracy over epoch {train_acc}")
acc_metric.reset_states()
# Test Loop
for batch_idx, (x_batch, y_batch) in enumerate(ds_test):
y_pred = model(x_batch, training=True)
acc_metric.update_state(y_batch, y_pred)
train_acc = acc_metric.result()
print(f"Accuracy over Test Set: {train_acc}")
acc_metric.reset_states()