Files

182 lines
3.5 KiB
Python
Raw Permalink Normal View History

2021-02-22 16:49:22 +01:00
import albumentations as A
import cv2
import torch
from albumentations.pytorch import ToTensorV2
from utils import seed_everything
DATASET = 'PASCAL_VOC'
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# seed_everything() # If you want deterministic behavior
NUM_WORKERS = 4
BATCH_SIZE = 32
IMAGE_SIZE = 416
2021-03-11 15:50:44 +01:00
NUM_CLASSES = 20
LEARNING_RATE = 1e-5
2021-02-22 16:49:22 +01:00
WEIGHT_DECAY = 1e-4
NUM_EPOCHS = 100
2021-03-11 15:50:44 +01:00
CONF_THRESHOLD = 0.05
2021-02-22 16:49:22 +01:00
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = True
SAVE_MODEL = True
CHECKPOINT_FILE = "checkpoint.pth.tar"
IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"
ANCHORS = [
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
] # Note these have been rescaled to be between [0, 1]
scale = 1.1
train_transforms = A.Compose(
[
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
A.PadIfNeeded(
min_height=int(IMAGE_SIZE * scale),
min_width=int(IMAGE_SIZE * scale),
border_mode=cv2.BORDER_CONSTANT,
),
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
A.OneOf(
[
A.ShiftScaleRotate(
2021-03-11 15:50:44 +01:00
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
2021-02-22 16:49:22 +01:00
),
2021-03-11 15:50:44 +01:00
A.IAAAffine(shear=15, p=0.5, mode="constant"),
2021-02-22 16:49:22 +01:00
],
p=1.0,
),
A.HorizontalFlip(p=0.5),
A.Blur(p=0.1),
A.CLAHE(p=0.1),
A.Posterize(p=0.1),
A.ToGray(p=0.1),
A.ChannelShuffle(p=0.05),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
)
test_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)
PASCAL_CLASSES = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
]
COCO_LABELS = ['person',
'bicycle',
'car',
'motorcycle',
'airplane',
'bus',
'train',
'truck',
'boat',
'traffic light',
'fire hydrant',
'stop sign',
'parking meter',
'bench',
'bird',
'cat',
'dog',
'horse',
'sheep',
'cow',
'elephant',
'bear',
'zebra',
'giraffe',
'backpack',
'umbrella',
'handbag',
'tie',
'suitcase',
'frisbee',
'skis',
'snowboard',
'sports ball',
'kite',
'baseball bat',
'baseball glove',
'skateboard',
'surfboard',
'tennis racket',
'bottle',
'wine glass',
'cup',
'fork',
'knife',
'spoon',
'bowl',
'banana',
'apple',
'sandwich',
'orange',
'broccoli',
'carrot',
'hot dog',
'pizza',
'donut',
'cake',
'chair',
'couch',
'potted plant',
'bed',
'dining table',
'toilet',
'tv',
'laptop',
'mouse',
'remote',
'keyboard',
'cell phone',
'microwave',
'oven',
'toaster',
'sink',
'refrigerator',
'book',
'clock',
'vase',
'scissors',
'teddy bear',
'hair drier',
'toothbrush'
]