Files

80 lines
2.3 KiB
Python
Raw Permalink Normal View History

2021-01-30 21:49:15 +01:00
import torch
import spacy
from torchtext.data.metrics import bleu_score
import sys
def translate_sentence(model, sentence, german, english, device, max_length=50):
# Load german tokenizer
spacy_ger = spacy.load("de")
# Create tokens using spacy and everything in lower case (which is what our vocab is)
if type(sentence) == str:
tokens = [token.text.lower() for token in spacy_ger(sentence)]
else:
tokens = [token.lower() for token in sentence]
# Add <SOS> and <EOS> in beginning and end respectively
tokens.insert(0, german.init_token)
tokens.append(german.eos_token)
# Go through each german token and convert to an index
text_to_indices = [german.vocab.stoi[token] for token in tokens]
# Convert to Tensor
sentence_tensor = torch.LongTensor(text_to_indices).unsqueeze(1).to(device)
# Build encoder hidden, cell state
with torch.no_grad():
outputs_encoder, hiddens, cells = model.encoder(sentence_tensor)
outputs = [english.vocab.stoi["<sos>"]]
for _ in range(max_length):
previous_word = torch.LongTensor([outputs[-1]]).to(device)
with torch.no_grad():
output, hiddens, cells = model.decoder(
previous_word, outputs_encoder, hiddens, cells
)
best_guess = output.argmax(1).item()
outputs.append(best_guess)
# Model predicts it's the end of the sentence
if output.argmax(1).item() == english.vocab.stoi["<eos>"]:
break
translated_sentence = [english.vocab.itos[idx] for idx in outputs]
# remove start token
return translated_sentence[1:]
def bleu(data, model, german, english, device):
targets = []
outputs = []
for example in data:
src = vars(example)["src"]
trg = vars(example)["trg"]
prediction = translate_sentence(model, src, german, english, device)
prediction = prediction[:-1] # remove <eos> token
targets.append([trg])
outputs.append(prediction)
return bleu_score(outputs, targets)
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model, optimizer):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])