2021-03-06 21:09:08 +01:00
|
|
|
import torch
|
|
|
|
|
import albumentations as A
|
|
|
|
|
from albumentations.pytorch import ToTensorV2
|
|
|
|
|
|
|
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
TRAIN_DIR = "data/train"
|
|
|
|
|
VAL_DIR = "data/val"
|
|
|
|
|
BATCH_SIZE = 1
|
|
|
|
|
LEARNING_RATE = 1e-5
|
|
|
|
|
LAMBDA_IDENTITY = 0.0
|
|
|
|
|
LAMBDA_CYCLE = 10
|
|
|
|
|
NUM_WORKERS = 4
|
|
|
|
|
NUM_EPOCHS = 10
|
2022-12-21 14:03:08 +01:00
|
|
|
LOAD_MODEL = False
|
2021-03-06 21:09:08 +01:00
|
|
|
SAVE_MODEL = True
|
|
|
|
|
CHECKPOINT_GEN_H = "genh.pth.tar"
|
|
|
|
|
CHECKPOINT_GEN_Z = "genz.pth.tar"
|
|
|
|
|
CHECKPOINT_CRITIC_H = "critich.pth.tar"
|
|
|
|
|
CHECKPOINT_CRITIC_Z = "criticz.pth.tar"
|
|
|
|
|
|
|
|
|
|
transforms = A.Compose(
|
|
|
|
|
[
|
|
|
|
|
A.Resize(width=256, height=256),
|
|
|
|
|
A.HorizontalFlip(p=0.5),
|
|
|
|
|
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255),
|
|
|
|
|
ToTensorV2(),
|
2022-12-21 14:03:08 +01:00
|
|
|
],
|
2021-03-06 21:09:08 +01:00
|
|
|
additional_targets={"image0": "image"},
|
2022-12-21 14:03:08 +01:00
|
|
|
)
|