Files

127 lines
4.1 KiB
Python
Raw Permalink Normal View History

2021-05-30 16:24:52 +02:00
import torch
from tqdm import tqdm
import numpy as np
from torch import nn
from torch import optim
from torch.utils.data import DataLoader, Dataset
from utils import save_checkpoint, load_checkpoint, check_accuracy
from sklearn.metrics import cohen_kappa_score
import config
import os
import pandas as pd
def make_prediction(model, loader, file):
preds = []
filenames = []
model.eval()
for x, y, files in tqdm(loader):
x = x.to(config.DEVICE)
with torch.no_grad():
predictions = model(x)
# Convert MSE floats to integer predictions
predictions[predictions < 0.5] = 0
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
predictions[(predictions >= 3.5) & (predictions < 1000000000000)] = 4
predictions = predictions.long().view(-1)
y = y.view(-1)
preds.append(predictions.cpu().numpy())
filenames += map(list, zip(files[0], files[1]))
filenames = [item for sublist in filenames for item in sublist]
df = pd.DataFrame({"image": filenames, "level": np.concatenate(preds, axis=0)})
df.to_csv(file, index=False)
model.train()
print("Done with predictions")
class MyDataset(Dataset):
def __init__(self, csv_file):
self.csv = pd.read_csv(csv_file)
def __len__(self):
return self.csv.shape[0]
def __getitem__(self, index):
example = self.csv.iloc[index, :]
features = example.iloc[: example.shape[0] - 4].to_numpy().astype(np.float32)
labels = example.iloc[-4:-2].to_numpy().astype(np.int64)
filenames = example.iloc[-2:].values.tolist()
return features, labels, filenames
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.BatchNorm1d((1536 + 1) * 2),
nn.Linear((1536+1) * 2, 500),
nn.BatchNorm1d(500),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(500, 100),
nn.BatchNorm1d(100),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(100, 2),
)
def forward(self, x):
return self.model(x)
if __name__ == "__main__":
model = MyModel().to(config.DEVICE)
ds = MyDataset(csv_file="train/train_blend.csv")
loader = DataLoader(ds, batch_size=256, num_workers=3, pin_memory=True, shuffle=True)
ds_val = MyDataset(csv_file="train/val_blend.csv")
loader_val = DataLoader(
ds_val, batch_size=256, num_workers=3, pin_memory=True, shuffle=True
)
ds_test = MyDataset(csv_file="train/test_blend.csv")
loader_test = DataLoader(
ds_test, batch_size=256, num_workers=2, pin_memory=True, shuffle=False
)
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
loss_fn = nn.MSELoss()
if config.LOAD_MODEL and "linear.pth.tar" in os.listdir():
load_checkpoint(torch.load("linear.pth.tar"), model, optimizer, lr=1e-4)
model.train()
for _ in range(5):
losses = []
for x, y, files in tqdm(loader_val):
x = x.to(config.DEVICE).float()
y = y.to(config.DEVICE).view(-1).float()
# forward
scores = model(x).view(-1)
loss = loss_fn(scores, y)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Loss: {sum(losses)/len(losses)}")
if config.SAVE_MODEL:
checkpoint = {"state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
save_checkpoint(checkpoint, filename="linear.pth.tar")
preds, labels = check_accuracy(loader_val, model)
print(cohen_kappa_score(labels, preds, weights="quadratic"))
preds, labels = check_accuracy(loader, model)
print(cohen_kappa_score(labels, preds, weights="quadratic"))
make_prediction(model, loader_test, "test_preds.csv")